当前位置: 首页 > news >正文

公司集团网站设计小程序开发公司

公司集团网站设计,小程序开发公司,深圳网络整合营销公司,百度网址收录提交入口当拥有一个相机,并且写了一个降噪的算法,想要测试降噪的应用效果。 相机在光线不足的情况下产生噪点的原因主要与以下几个因素有关: 感光元件的工作原理:相机的图像传感器是由数百万甚至数千万的感光元件(如CMOS或CC…

当拥有一个相机,并且写了一个降噪的算法,想要测试降噪的应用效果。

相机在光线不足的情况下产生噪点的原因主要与以下几个因素有关:

感光元件的工作原理:相机的图像传感器是由数百万甚至数千万的感光元件(如CMOS或CCD中的像素)组成的。每一个感光元件都试图捕获进入相机的光。但是,光子的到达是随机的,当光线很弱时,这种随机性更为明显,导致不同感光元件记录的光子数存在较大的差异,从而引发噪点。
ISO的增加:为了在光线不足的环境中获得更亮的图像,相机会增加其ISO值,这实际上是增加了图像传感器的增益。但增加增益的同时,传感器的噪声也会增加,导致图像中出现更多的噪点。
热噪声:当相机工作时,传感器会产生热量。特别是在长时间曝光或高ISO值的情况下,这种热量会增加。传感器的温度越高,产生的热噪声就越明显,这也会在图像中引入噪点。
电路噪声:除了热噪声外,相机内部的电路(如模拟数字转换器)也会引入一定的噪声,特别是在低光照条件下。
信号与噪声比(SNR):在光线充足的环境中,感光元件接收到的光子数(信号)相对于噪声来说是较大的,因此SNR较高,图像质量较好。但在光线不足的环境中,感光元件接收到的光子数减少,而噪声并不显著减少,导致SNR降低,噪点变得更为明显。

无所谓因素,反正有噪声了。

测试设计
目测法:光线充足时肉眼很难发现噪声,而光线比较暗是噪声明显,得出相机光线差时工作效果不理想的结论。

量化噪声:
使用相机拍摄一块纯色色卡,观察噪声情况。

期望:
相机拍出的画面数值保持一致表明没有噪声。(纯黑看不见除外)
相机拍出的画面数值与画面均值比较有一些波动表明有噪声存在。

量化波动情况即量化噪声情况。

色卡
在这里插入图片描述
由于色卡不是纯色,所以需要通过一些操作找到纯色部分进行裁剪,再进行评估噪声。
代码使用ipynb 来测试。
裁剪代码:

# 导入一些不知道干什么的依赖库import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeansimport cv2
import numpy as np
import matplotlib.pyplot as plt# 输入图像路径
path1 = input("Enter path to the first image: ")
path2 = input("Enter path to the second image: ")# 打开图片
image1 = cv2.imread(path1)
image2 = cv2.imread(path2)image1_gray = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
image2_gray = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)# 使用 matplotlib 展示结果
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(cv2.cvtColor(image1_gray, cv2.COLOR_BGR2RGB))
ax[0].set_title("image1 gray")
ax[0].axis('off')
ax[1].imshow(cv2.cvtColor(image2_gray, cv2.COLOR_BGR2RGB))
ax[1].set_title("image2 gray")
ax[1].axis('off')
plt.show()

在这里插入图片描述

边缘检测,找到最大的色块边界,边缘不连贯就加点滤波

# 使用 Canny 边缘检测
blurred = cv2.GaussianBlur(image1_gray, (5, 5), 0)
image1_edged = cv2.Canny(blurred, 100, 200)
image2_edged = cv2.Canny(image2_gray, 100, 200)# 使用 matplotlib 展示结果
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(cv2.cvtColor(image1_edged, cv2.COLOR_BGR2RGB))
ax[0].set_title("image1 edged")
ax[0].axis('off')
ax[1].imshow(cv2.cvtColor(image2_edged, cv2.COLOR_BGR2RGB))
ax[1].set_title("image2 edged")
ax[1].axis('off')
plt.show()

在这里插入图片描述

边缘检测后 截取最大的纯色范围

# 寻找边缘检测后的图像中的轮廓
def find_contours(image, edged):# 寻找边缘检测后的图像中的轮廓contours, _ = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 假设色板是最大的轮廓max_contour = max(contours, key=cv2.contourArea)x, y, w, h = cv2.boundingRect(max_contour)# 提取色板palette = image[y+10:y+h-10, x+10:x+w-10]return palette# 对两张图像分别提取色板
palette_image1 = find_contours(image1_gray, image1_edged)
palette_image2 = find_contours(image2_gray, image2_edged)
# 使用 matplotlib 展示结果
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(cv2.cvtColor(palette_image1, cv2.COLOR_BGR2RGB))
ax[0].set_title("Palette from Image 1")
ax[0].axis('off')
ax[1].imshow(cv2.cvtColor(palette_image2, cv2.COLOR_BGR2RGB))
ax[1].set_title("Palette from Image 2")
ax[1].axis('off')
plt.show()

在这里插入图片描述
到这里就截取出来可以评估的部分了
干正事吧

评估噪声

mean1 = np.mean(palette_image1)
mean2 = np.mean(palette_image2)median1 = np.median(palette_image1)
median2 = np.median(palette_image2)std1 = np.std(palette_image1, ddof=1)
std2 = np.std(palette_image2, ddof=1)print(f"image src 评估的噪声水平: {std1}")
print(f"image ret 评估的噪声水平: {std2}")fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(palette_image1-mean1)
ax[1].imshow(palette_image2-mean2)
plt.show()

在这里插入图片描述

http://www.mmbaike.com/news/37288.html

相关文章:

  • 网站建设课程体系站群seo技巧
  • 做网站主色调选择二级域名查询网站
  • 有全部公司的网站附近有学电脑培训班吗
  • 了解做房产广告的网站湖南正规关键词优化首选
  • 政府网站建设纳入考核seo公司运营
  • 微信平台优化营商环境心得体会2023
  • 国外做螺栓比较好的网站网站seo优化排名
  • 用华为云建立Wordpress网站韩国今日特大新闻
  • wordpress playlm版权网站seo的优化怎么做
  • 网站建设推销获客软件
  • 澄迈住房和城乡建设局网站正版google下载
  • 网站上的滚动条是如何做的百度指数名词解释
  • 有什么网站可以做电子版邀请函企业文化经典句子
  • 2018年网站建设已矣seo排名点击软件
  • 做外贸免费的网站有哪些情感链接
  • 景安网站百度公司招聘条件
  • 哪些网站是做食品个人免费网上注册公司
  • 什么是网站建设的基础可以商用的电视app永久软件
  • 网站制作费一般多少长春百度推广排名优化
  • 网站建设哪里比较好西安网站优化公司
  • 做站群什么样的算是违法网站论坛推广软件
  • 网络代理什么平台赚钱啊seo技术教程
  • 沈阳做招聘网站seo优
  • 最好机票网站建设网盘网页版
  • 建设设计网站营销管理培训课程
  • 西部数码网站建设教程军事新闻最新
  • 成都网站建设四易维达电子商务与网络营销教案
  • 济南推广网站建设英语培训
  • 公司免费网站搭建多用户建站平台
  • 简洁 手机 导航网站模板下载专业整站优化