当前位置: 首页 > news >正文

自己做网站要多少钱网站优化建设

自己做网站要多少钱,网站优化建设,金泉网网站建设,衢州做网站1.梯度提升树在神经网络的应用 使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。此外&…

1.梯度提升树在神经网络的应用

        使用梯度提升树进行特征选择的好处在于可以得到特征的重要性分数,从而识别出对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。此外,特征选择可以帮助理解数据,并为进一步的特征工程提供指导,有效地提高模型的预测性能。
        梯度提升树(GBT)是一种强大的监督学习算法,常用于回归和分类问题。通过利用多棵决策树的集成学习方式,GBT 能够捕获非线性关系、处理复杂的数据结构,并对特征之间的相互作用进行建模。因此,使用梯度提升树进行特征选择可以帮助构建更简洁、高效的模型,提高预测准确性,同时保持较好的解释性。

通俗点讲就是,用科学、合理的方法去除掉数据集中不需要的特征。常用在回归预测任务的数据集处理中(也就是N个输入特征,一个输出特征)。

2.代码实现

这一部分主要是进行环境设置。关闭了 MATLAB 的警告信息显示,关闭所有先前打开的图形窗口,清除了 MATLAB 工作区中的所有变量,并清空命令窗口。

warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口

这里是用 readtable 函数从名为 "01.csv" 的CSV文件中读取数据并将其存储在变量 data 中。如果数据文件不包含表头,则需要使用 readmatrix 函数。

data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数

这段代码将数据拆分为特征和目标变量。其中 X 存储假设前 2000 行数据的前 6 列是特征,y 存储假设前 2000 行数据的最后一列是目标变量。

X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量

这部分使用 fitensemble 函数构建了一个包含 100 棵树的 LSBoost 集成模型,用于回归任务。

ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');

在这个部分中,计算了特征的重要性得分,并将其进行了归一化处理。然后将其显示出来。

featureImportance = predictorImportance(ens);
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);

这一部分可视化了特征重要性得分,通过绘制条形图展示各个特征的重要性。

bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');

这一部分代码输出了最重要的四个特征,并重新设置了图表横坐标。(笔者的数据集格式为6个输入一个输出的风力发电机功率数据集)

topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
xticklabels(topFeaturesNames);

 3.运行结果

        运行结果如下(以笔者的风力发电机数据集为例):

 4.完整代码

%% 清空环境变量
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口
% 读取CSV文件
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数% 将数据拆分为特征和目标变量
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7};   % 假设最后一列是目标变量ens = fitensemble(X, y, 'LSBoost', 100, 'Tree', 'Type', 'regression');% 计算特征的重要性分数
featureImportance = predictorImportance(ens);
% 将特征的重要性得分归一化处理
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);% 可视化特征重要性
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');% 根据得分排序特征
[sortedImportance, sortedIdx] = sort(normalizedFeatureImportance, 'descend');
topFeatures = sortedIdx(1:4); % 选择最重要的四个特征% 输出最重要的特征
topFeaturesNames = {'湿度', '真实风速', '气象风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
% 重新设置图表横坐标
xticklabels(topFeaturesNames);
http://www.mmbaike.com/news/39983.html

相关文章:

  • 做网站版头蓝色图片推广关键词优化
  • 哪个网站有上门做指甲推广营销软件app
  • 网站制作例子seo培训中心
  • 龙岩建设局网站罗小波线上营销活动方案
  • 制作微信公众号的网站开发武汉seo公司出 名
  • 网站建设和维护价格网站制作河南
  • 域名过期做的网站怎么办360竞价推广技巧
  • 如何仿做网站百度seo软件优化
  • 网站图片切换代码深圳华强北
  • seo网站计划书抖音关键词优化排名靠前
  • ui设计周末培训机构网站推广和精准seo
  • 杭州动漫设计公司最新招聘百度关键词优化企业
  • 黑河北京网站建设数据分析师培训机构推荐
  • 仿58网站怎么做凡科网小程序
  • 做阿里巴巴类似的网站吗seo和sem的区别是什么
  • 深圳网站建设网站制作公司seo推广人员
  • 典型网站建设百度文章收录查询
  • 车票网站模板百度排行
  • 视频上传网站建设外贸b2b平台都有哪些网站
  • 做网站图片太多怎么办营销推广渠道有哪些
  • 全能网站建设蜘蛛seo超级外链工具
  • 石家庄个人谁做网站外贸海外推广
  • 外贸网站优势百度贴吧人工客服电话
  • 网站服务类型怎么选社交网络推广方法
  • 飞创网站建设免费找精准客户软件
  • wordpress虚拟资源主题重庆的seo服务公司
  • 怎么通过做网站来赚钱吗怎么引流怎么推广自己的产品
  • 网站做效果联系方式p站关键词排名
  • 网站开发 售后服务协议西安快速排名优化
  • 制作哪个网站好app拉新推广