当前位置: 首页 > news >正文

服装网站设计门户网站建站系统

服装网站设计,门户网站建站系统,网页设计精选网站,wordpress 显示文章日期的方法详解 torch.triu:上三角矩阵的高效构造 在深度学习和矩阵运算中,我们经常需要构造上三角矩阵(Upper Triangular Matrix),其中主对角线以下的元素全部设为 0。PyTorch 提供了一个高效的函数 torch.triu(),用…

详解 torch.triu:上三角矩阵的高效构造

在深度学习和矩阵运算中,我们经常需要构造上三角矩阵(Upper Triangular Matrix),其中主对角线以下的元素全部设为 0。PyTorch 提供了一个高效的函数 torch.triu(),用于生成上三角矩阵,并允许我们灵活地调整对角线的偏移量。

在本篇博客中,我们将深入探讨:

  • torch.triu() 的基本用法
  • 第二个参数 diagonal 如何影响结果
  • torch.triu(all_ones, -1 * 2 + 1) 会生成什么
  • 代码示例与应用场景

1. torch.triu 的基本用法

1.1 语法

torch.triu(input, diagonal=0)
  • input:输入张量(必须是 2D 矩阵)
  • diagonal:指定从哪条对角线开始保留元素:
    • diagonal=0(默认):保留主对角线及其上的元素
    • diagonal>0:向上偏移 diagonal
    • diagonal<0:向下偏移 diagonal

1.2 示例:默认 diagonal=0

import torchA = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]
])B = torch.triu(A)
print(B)

输出:

tensor([[1, 2, 3],[0, 5, 6],[0, 0, 9]])

解释

  • 主对角线(1, 5, 9)及其上方元素(2, 3, 6)被保留
  • 下三角部分(4, 7, 8)被置为 0

2. diagonal 参数的作用

2.1 diagonal > 0:向上偏移

B = torch.triu(A, diagonal=1)
print(B)

输出:

tensor([[0, 2, 3],[0, 0, 6],[0, 0, 0]])

解释

  • diagonal=1 表示从主对角线上方一行开始保留元素
  • 主对角线元素(1, 5, 9)被置为 0
  • 仅保留 2, 3, 6

2.2 diagonal < 0:向下偏移

B = torch.triu(A, diagonal=-1)
print(B)

输出:

tensor([[1, 2, 3],[4, 5, 6],[0, 8, 9]])

解释

  • diagonal=-1 表示从主对角线下一行开始保留元素
  • 主对角线以上元素仍保留
  • 下三角部分的 7 变成 0,但 4, 8 仍然保留

3. torch.triu(all_ones, -1 * 2 + 1) 解析

假设:

all_ones = torch.ones(5, 5)
B = torch.triu(all_ones, -1 * 2 + 1)
print(B)

让我们拆解 diagonal 参数:

  • -1 * 2 + 1 = -1
  • 这等价于 torch.triu(all_ones, -1)

all_ones 矩阵:

tensor([[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1]])

torch.triu(all_ones, -1) 结果:

tensor([[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[0, 1, 1, 1, 1],[0, 0, 1, 1, 1],[0, 0, 0, 1, 1]])

解释

  • diagonal=-1 意味着主对角线及其上一行都保留
  • 低于 -1 的部分被置 0

4. torch.triu() 的应用场景

4.1 生成注意力掩码(Transformer)

在 Transformer 的自回归解码过程中,我们使用 torch.triu() 生成上三角掩码(mask),避免未来信息泄露:

seq_len = 5
mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1)
mask = mask.masked_fill(mask == 1, float('-inf'))
print(mask)

输出(掩码矩阵):

tensor([[  0., -inf, -inf, -inf, -inf],[  0.,   0., -inf, -inf, -inf],[  0.,   0.,   0., -inf, -inf],[  0.,   0.,   0.,   0., -inf],[  0.,   0.,   0.,   0.,   0.]])

用于 softmax 计算,使模型只能关注当前及之前的 token


4.2 计算上三角矩阵的和

A = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]
])
upper_sum = torch.triu(A).sum()
print(upper_sum)  # 26

解释

  • 只保留 1, 2, 3, 5, 6, 9
  • 1 + 2 + 3 + 5 + 6 + 9 = 26

4.3 生成 Pascal 三角形

n = 5
pascal = torch.triu(torch.ones(n, n), diagonal=0)
for i in range(1, n):for j in range(1, i+1):pascal[i, j] = pascal[i-1, j-1] + pascal[i-1, j]
print(pascal)

输出:

tensor([[1., 0., 0., 0., 0.],[1., 1., 0., 0., 0.],[1., 2., 1., 0., 0.],[1., 3., 3., 1., 0.],[1., 4., 6., 4., 1.]])

5. 总结

  • torch.triu() 用于生成上三角矩阵,对角线以下的元素设为 0。
  • diagonal 控制保留的最小对角线
    • diagonal=0:默认保留主对角线及以上
    • diagonal>0:向上偏移,更多元素变 0
    • diagonal<0:向下偏移,更多元素被保留
  • torch.triu(all_ones, -1 * 2 + 1) 生成 diagonal=-1 的上三角矩阵
  • 常见应用
    • Transformer 掩码
    • 矩阵运算
    • 构造 Pascal 三角形

🚀 torch.triu() 是矩阵计算和深度学习中必不可少的函数,掌握它可以优化你的 PyTorch 代码!

Understanding torch.triu: Constructing Upper Triangular Matrices in PyTorch

In deep learning and matrix computations, upper triangular matrices are widely used, where all elements below the main diagonal are set to zero. PyTorch provides the efficient function torch.triu() to generate upper triangular matrices and allows flexible control over which diagonal to retain.

In this blog post, we will explore:

  • The basic usage of torch.triu()
  • How the second parameter diagonal affects the output
  • What torch.triu(all_ones, -1 * 2 + 1) generates
  • Practical examples and applications

1. Introduction to torch.triu

1.1 Syntax

torch.triu(input, diagonal=0)
  • input: The input tensor (must be a 2D matrix).
  • diagonal: Specifies which diagonal to retain:
    • diagonal=0 (default): Retains the main diagonal and elements above it.
    • diagonal>0: Shifts retention upwards.
    • diagonal<0: Shifts retention downwards.

1.2 Example: Default diagonal=0

import torchA = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]
])B = torch.triu(A)
print(B)

Output:

tensor([[1, 2, 3],[0, 5, 6],[0, 0, 9]])

Explanation:

  • The main diagonal (1, 5, 9) and elements above it (2, 3, 6) are retained.
  • The lower triangular part (4, 7, 8) is set to 0.

2. Understanding the diagonal Parameter

2.1 diagonal > 0: Shift upwards

B = torch.triu(A, diagonal=1)
print(B)

Output:

tensor([[0, 2, 3],[0, 0, 6],[0, 0, 0]])

Explanation:

  • diagonal=1 retains elements from one row above the main diagonal.
  • The main diagonal (1, 5, 9) is set to 0.
  • Only elements 2, 3, 6 are preserved.

2.2 diagonal < 0: Shift downwards

B = torch.triu(A, diagonal=-1)
print(B)

Output:

tensor([[1, 2, 3],[4, 5, 6],[0, 8, 9]])

Explanation:

  • diagonal=-1 retains elements from one row below the main diagonal.
  • The main diagonal and upper part remain unchanged.
  • The lowest element 7 is set to 0, but 4, 8 are retained.

3. What does torch.triu(all_ones, -1 * 2 + 1) generate?

Assume:

all_ones = torch.ones(5, 5)
B = torch.triu(all_ones, -1 * 2 + 1)
print(B)

Breaking down diagonal:

  • -1 * 2 + 1 = -1
  • Equivalent to torch.triu(all_ones, -1)

all_ones matrix:

tensor([[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[1, 1, 1, 1, 1]])

torch.triu(all_ones, -1) result:

tensor([[1, 1, 1, 1, 1],[1, 1, 1, 1, 1],[0, 1, 1, 1, 1],[0, 0, 1, 1, 1],[0, 0, 0, 1, 1]])

Explanation:

  • diagonal=-1 means retaining the main diagonal and one row below it.
  • Elements below -1 are set to 0.

4. Applications of torch.triu()

4.1 Generating Attention Masks (Transformers)

In Transformers, upper triangular masks are used to prevent future information leakage during autoregressive decoding:

seq_len = 5
mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1)
mask = mask.masked_fill(mask == 1, float('-inf'))
print(mask)

Output (Mask Matrix):

tensor([[  0., -inf, -inf, -inf, -inf],[  0.,   0., -inf, -inf, -inf],[  0.,   0.,   0., -inf, -inf],[  0.,   0.,   0.,   0., -inf],[  0.,   0.,   0.,   0.,   0.]])

This ensures that the model can only attend to current and past tokens.


4.2 Summing the Upper Triangular Matrix

A = torch.tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]
])
upper_sum = torch.triu(A).sum()
print(upper_sum)  # 26

Explanation:

  • Retains only 1, 2, 3, 5, 6, 9
  • 1 + 2 + 3 + 5 + 6 + 9 = 26

4.3 Constructing Pascal’s Triangle

n = 5
pascal = torch.triu(torch.ones(n, n), diagonal=0)
for i in range(1, n):for j in range(1, i+1):pascal[i, j] = pascal[i-1, j-1] + pascal[i-1, j]
print(pascal)

Output:

tensor([[1., 0., 0., 0., 0.],[1., 1., 0., 0., 0.],[1., 2., 1., 0., 0.],[1., 3., 3., 1., 0.],[1., 4., 6., 4., 1.]])

5. Conclusion

  • torch.triu() constructs upper triangular matrices, setting elements below the specified diagonal to zero.
  • The diagonal parameter controls which diagonal to retain:
    • diagonal=0: Retains the main diagonal and above.
    • diagonal>0: Shifts upwards, removing more elements.
    • diagonal<0: Shifts downwards, keeping more elements.
  • torch.triu(all_ones, -1 * 2 + 1) generates an upper triangular matrix with diagonal=-1.
  • Common use cases:
    • Transformers attention masks
    • Matrix computations
    • Constructing Pascal’s triangle

🚀 torch.triu() is an essential function for matrix computations and deep learning, making PyTorch code more efficient and readable!

后记

2025年2月23日14点50分于上海,在GPT4o大模型辅助下完成。

http://www.mmbaike.com/news/40293.html

相关文章:

  • 套用模板网站dz论坛seo设置
  • 成都网站开发建设推广百度医生在线问诊
  • 如何看一个网站开发语言石家庄整站优化技术
  • 域名弄好了网站怎么建设培训课程设计方案
  • 怎么查网站空间职业教育培训机构排名前十
  • 宁波建站平台网站怎样优化关键词好
  • 什么网站广告做多优秀的软文广告案例
  • iis建立网站长沙服务好的网络营销
  • 我是做装修什么网站可以网站设计制作
  • 政府网站 建设依据学生没钱怎么开网店
  • 杭州高端网站制作搜索引擎最佳化
  • 水果电商网站建设相关文献宣传推广方案怎么写
  • 网站发布服务托管器新闻株洲最新
  • wordpress优化加速插件亚马逊seo是什么意思
  • 阿里巴巴网站建设策略调研泉州seo按天收费
  • 90设计网站官网入口樱桃磁力bt天堂
  • 在线直播系统开发太原优化排名推广
  • 保定网站建设多少钱哪家好长沙seo就选智优营家
  • 网站公安备案有必要吗黑龙江seo关键词优化工具
  • 个人网站建设教学视频百度刷排名seo软件
  • drupal网站建设数据库电脑系统优化工具
  • 网站建设类公深圳百度推广竞价托管
  • 彩票网站 在哪里做培训班有哪些课程
  • 二级建造师挂靠免费seo教程资源
  • 疫情北京最新消息网络营销优化推广公司
  • 鹰潭市城乡建设局老网站品牌推广软文案例
  • 海西州建设局网站百度旗下所有app列表
  • 装修网站应该怎么做网站建设方案书
  • 铜仁北京网站建设百度seo排名培训 优化
  • 上海市政府网站建设与对策分析什么是口碑营销