当前位置: 首页 > news >正文

国外网站模板网站建设牛奶软文广告营销

国外网站模板网站建设,牛奶软文广告营销,绿色大气5.7织梦网站模版,白云区同和网站建设216. 组合总和 III39. 组合总和40. 组合总和 II46. 全排列47. 全排列 II77. 组合 78. 子集 90. 子集 II 以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类: 元素无重不可复选&#xff0…
216. 组合总和 III
39. 组合总和
40. 组合总和 II
46. 全排列
47. 全排列 II
77. 组合

78. 子集

90. 子集 II

以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类:

  1. 元素无重不可复选,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次,这也是最基本的形式。
  2. 元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次。
  3. 元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次。

以组合为例:

1.如果输入 nums = [2,3,6,7],和为 7 的组合应该只有 [7]

2.如果输入 nums = [2,5,2,1,2],和为 7 的组合应该有两种 [2,2,2,1] 和 [5,2]

3.如果输入 nums = [2,3,6,7],和为 7 的组合应该有两种 [2,2,3] 和 [7]

上面用组合问题举的例子,但排列、组合、子集问题都可以有这三种基本形式,所以共有 9 种变化。

除此之外,题目也可以再添加各种限制条件,比如让你求和为 target 且元素个数为 k 的组合,那这么一来又可以衍生出一堆变体,所以一般笔试很喜欢出这种题。

但无论怎么变化,其本质就是穷举所有解,而这些解呈现树形结构,使用回溯算法框架再稍微修改一些细节即可把这些问题一网打尽

回溯算法框架代码如下:

import java.util.ArrayList;
import java.util.List;public class BacktrackExample {private List<List<Object>> result = new ArrayList<>();public void backtrack(List<Object> path, List<Object> choices) {if (满足结束条件(path)) {result.add(new ArrayList<>(path));return;}for (Object choice : choices) {// 做选择path.add(choice);// 递归backtrack(path, choices);// 撤销选择path.remove(path.size() - 1);}}private boolean 满足结束条件(List<Object> path) {// 这里实现满足结束条件的逻辑return false; // 示例返回,替换为实际逻辑}public List<List<Object>> getResult() {return result;}}

问题一:当元素无重不可复选时,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

 问题二:元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次,其关键在于排序和剪枝

Arrays.sort(nums);
// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 剪枝逻辑,跳过值相同的相邻树枝if (i > start && nums[i] == nums[i - 1]) {continue;}// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}Arrays.sort(nums);
// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 剪枝逻辑,固定相同的元素在排列中的相对位置if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

问题三:元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 做选择track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();}
}

只要从树的角度思考,这些问题看似复杂多变,实则改改 base case 就能解决。只要熟悉了该框架,再细致了解一下细节问题,相信排列组合子集问题都不是问题。

http://www.mmbaike.com/news/41367.html

相关文章:

  • 营销型网站建设微博网站百度不收录
  • nodejs可以做企业网站吗百度seo点击工具
  • 网站维护中 源码青岛网站制作
  • 方维服务公司服务范围精准的搜索引擎优化
  • java网站建设书籍创建个人网站的流程
  • 免费代码编写网站百度推广账号注册
  • 淘宝客网站开发 猪八戒360推广怎么收费
  • 太原网络营销网站做推广怎么做
  • 网站如何做微信分享推广武汉网络推广公司
  • 东营网站搭建郑州网络推广方法
  • 网站建设怎么报价百度置顶广告多少钱
  • 京东客网站怎么做的网站搜索量查询
  • 做网站纸张大小看seo
  • 推广产品网站建设百度推广网页版
  • 制作网站的网页第三方营销策划公司有哪些
  • 淄博做网站建设2023网络营销成功案例
  • 怎么建设彩票网站沪深300指数基金
  • 赣州新闻联播直播网站seo技术能不能赚钱
  • 国外公司在国内建网站肇庆seo按天收费
  • 怎么做货物收发的网站网站seo优化课程
  • 手机网站建设最新报价如何注册网址
  • 做的好的h游戏下载网站澳门seo关键词排名
  • 学做PPT报告的网站搜索引擎简称seo
  • 前端做网站需要关键词首页排名优化平台
  • 地质公园网站建设搜索网
  • 做网站 简单外包网站seo什么意思
  • 网站建设进度及实过程网站优化技术
  • php动态网站开发人民邮电出版社河北网站seo外包
  • wordpress网站打开卡新手怎么学做电商
  • 无锡高端网站设计制作网络营销企业案例分析