当前位置: 首页 > news >正文

网站开发与设计岗位职责app投放渠道有哪些

网站开发与设计岗位职责,app投放渠道有哪些,深圳市住房和建设局网站登录,满屏网站设计做多大目录 一.引言 二.双向 BFS 简介 1.双向遍历示例 2.搜索模版回顾 三.经典算法实战 1.Word-Ladder [127] 2.Min-Gen-Mutation [433] 四.总结 一.引言 DFS、BFS 是常见的初级搜索方式,为了提高搜索效率,衍生了剪枝、双向 BFS 以及 A* 即启发式搜索…

目录

一.引言

二.双向 BFS 简介

1.双向遍历示例

2.搜索模版回顾

三.经典算法实战

1.Word-Ladder [127]

2.Min-Gen-Mutation [433]

四.总结


一.引言

DFS、BFS 是常见的初级搜索方式,为了提高搜索效率,衍生了剪枝、双向 BFS 以及 A* 即启发式搜索等高级搜索方式。剪枝通过避免不必要或者次优解来减少搜索的次数,提高搜索效率;双向 BFS 通过层序遍历从首尾逼近答案,提高搜索效率;启发式搜索则是从优先级的角度出发,基于优先级高低搜索,提高搜索效率。本文主要介绍双向 BFS 的使用。

二.双向 BFS 简介

1.双向遍历示例

◆  双向连通图

求 A -> L 所需最短路径。

◆  遍历层级关系

不同颜色代表不同层级的 BFS,绿色为 root,蓝色为第二层,从左向右递推。

◆  双向遍历

从 A/L 同时层序遍历,当二者扩散的点重合时,左右路径长度相加即为最短路径。

2.搜索模版回顾

◆ DFS - 递归

◆ DFS - 非递归 

◆ BFS - 栈 

三.经典算法实战

1.Word-Ladder [127]

单词接龙: https://leetcode.cn/problems/word-ladder/description/

◆ 单向 BFS

class Solution:    def ladderLength(self, beginWord, endWord, wordList):""":type beginWord: str:type endWord: str:type wordList: List[str]:rtype: int"""valid_word = set(wordList)if endWord not in valid_word:return 0stack = [(beginWord, 1)]while stack:word, level = stack.pop(0)for i in range(len(word)):for char in "abcdefghijklmnopqrstuvwxyz":new_word = word[:i] + char + word[i + 1:]if new_word == endWord:return level + 1elif new_word in valid_word:stack.append((new_word, level + 1))valid_word.remove(new_word)return 0

这里我们可以打印一下转换的流程图,hot 有多层 level 出发,第二条路径走到了 cog,即结束遍历,当然 log 也可以走到 cog 只不过已经不需要了。

hot 2 -> lot 3

hot 2 -> dot 3 -> dog 4 -> cog 5

hot 2 -> dot 3 -> log 4 

◆ 双向 BFS 

class Solution(object):def ladderLength(self, beginWord, endWord, wordList):""":type beginWord: str:type endWord: str:type wordList: List[str]:rtype: int"""# 去重使用valid_word = set(wordList)# 边界条件if endWord not in wordList or len(wordList) == 0:return 0# 双向 BFSbegin, end, step = {beginWord}, {endWord}, 1# 同时有元素才能继续,如果一遍没元素代表已中断,无法联通,直接结束while begin and end:# 减少排查的可能性,从单词少的方向排查,避免无效查询if len(begin) > len(end):begin, end = end, begin# 存储下一层next_level = set()# 遍历下一层的多个结果for word in begin:# 遍历每个位置for i in range(len(word)):# a-zfor char in "abcdefghijklmnopqrstuvwxyz":# 节省无必要的替换if char != word[i]:new_word = word[:i] + char + word[i + 1:]# 二者相遇即返回if new_word in end:return step + 1if new_word in valid_word:next_level.add(new_word)valid_word.remove(new_word)# 指针替换begin = next_levelstep += 1return 0

已经将详细的注释加在代码里了,从 {start},{end} 两个方向查找,每次只找短的缩小无效查询的次数,这其实也是一种剪枝的策略,正所谓图中有真意欲辨已忘言:

◆ 双向 BFS + 剪枝

class Solution(object):def ladderLength(self, beginWord, endWord, wordList):""":type beginWord: str:type endWord: str:type wordList: List[str]:rtype: int"""# 去重使用valid_word = set(wordList)if endWord not in wordList or len(wordList) == 0:return 0# 剪枝优化s = set()for word in wordList:for char in word:s.add(char)s = ''.join(list(s))# 双向 BFSbegin, end, step = {beginWord}, {endWord}, 1while begin and end:if len(begin) > len(end):begin, end = end, begin# 存储下一层next_level = set()for word in begin:for i in range(len(word)):# a-zfor char in s:# 节省无必要的替换if char != word[i]:new_word = word[:i] + char + word[i + 1:]if new_word in end:return step + 1if new_word in valid_word:next_level.add(new_word)valid_word.remove(new_word)# 指针替换begin = next_levelstep += 1return 0

上面的两个方法在构建 new_word 时都遍历了所有 26 个字母 char,其实我们可以根据 end_word 的去重字符进行状态空间压缩,从而减少无意义的遍历,因为 char not in end_word 则 new_word 必定 not in end_word,从而优化时间复杂度。 

2.Min-Gen-Mutation [433]

最小基因突变: https://leetcode.cn/problems/minimum-genetic-mutation/description/ 

◆ BFS

class Solution(object):def minMutation(self, startGene, endGene, bank):""":type startGene: str:type endGene: str:type bank: List[str]:rtype: int"""if not bank:return -1bank = set(bank)if endGene not in bank:return -1stack = [(startGene, 0)]while stack:gene, level = stack.pop(0)for i in range(len(gene)):for char in "ACGT":new_gene = gene[:i] + char + gene[i + 1:]if new_gene == endGene:return level + 1if new_gene in bank:stack.append((new_gene, level + 1))bank.remove(new_gene)return -1

和上一题异曲同工之妙,只不过从单词接龙变成基因 🧬 接龙,每次修改的地方有限。

◆ 双向 BFS

class Solution(object):def minMutation(self, startGene, endGene, bank):""":type startGene: str:type endGene: str:type bank: List[str]:rtype: int"""if not bank:return -1bank = set(bank)if endGene not in bank:return -1# 初始化首尾front, back, step = {startGene}, {endGene}, 0while front and back:next_front = set()# 遍历当前层 Genefor gene in front:print(gene)for i in range(len(gene)):for char in "ACGT":new_gene = gene[:i] + char + gene[i + 1:]# 相遇了if new_gene in back:return step + 1# 下一层突变if new_gene in bank:next_front.add(new_gene)bank.remove(new_gene)# 取短的遍历加速if len(next_front) > len(back):front, back = back, next_frontelse:front = next_frontstep += 1return -1

和上面异曲同工,老曲新唱,相当于再温习一遍。其加速点就是左右替换,优先遍历可能性少的情况。

四.总结

这节内容 '双向 BFS' 起始也包含着很多剪枝的策略,所以其也属于优化搜索方式的方法之一,下一节我们介绍高级搜索的最后一块内容: A* 启发式搜索。

http://www.mmbaike.com/news/101674.html

相关文章:

  • 如何将项目发布到网上百度首页排名优化多少钱
  • .net 网站管理系统嘉兴百度seo
  • 9夜夜做新郎网站app推广平台放单平台
  • 个人发布房源的网站陕西网站建设制作
  • 成都网站建设桔子东莞网站营销
  • 学校网站建设的软件环境在线培训系统平台
  • 做网站数据需要的软件百度一下你就知道搜索引擎
  • 工业和信息化部人才交流中心seo薪酬
  • 网站建设排名优化公司关键词有几种类型
  • 网络销售主要做些什么seo优化服务价格
  • 网站开发软件怎么做保定网站建设报价
  • 建设银行官方网站广州山东最新消息今天
  • 免费网站建设报价合肥seo按天收费
  • 聊城做网站的公司平台网络营销推广方式包括哪些
  • 网站开发核心技术网络推广计划书范文
  • 网站建设公司经营营业推广策略有哪些
  • 高端网站开发设计品牌营销案例
  • 做的网站图片不显示国际网站平台有哪些
  • 哈尔滨网站制作哪家好windows优化大师的优点
  • 甘肃网站空间免费二级域名申请网站
  • 建站哪家好就要用兴田德润今日国内新闻最新消息大事
  • 国外企业网站模板windows优化大师会员
  • 大型网站搜索怎么做的茶叶seo网站推广与优化方案
  • wordpress怎么加站点图标牡丹江网站seo
  • 风向 网站福州网络推广运营
  • 用win2003做网站广告投放的方式有哪些
  • 微股东微网站制作平台站外推广渠道
  • 怎么用织梦做网站后台营销传播
  • anker 网站谁做的上海关键词排名优化公司
  • 做网站用的插件谷歌自然排名优化