当前位置: 首页 > news >正文

沙漠网站建设百度竞价排名的利与弊

沙漠网站建设,百度竞价排名的利与弊,哪些网站可以上传自己做的视频,铸铁加工平台文章目录 前言代码 前言 当我们需要对大规模的数据向量化以存到向量数据库中时,且服务器上有多个GPU可以支配,我们希望同时利用所有的GPU来并行这一过程,加速向量化。 代码 就几行代码,不废话了 from sentence_transformers i…

文章目录

  • 前言
  • 代码


前言

当我们需要对大规模的数据向量化以存到向量数据库中时,且服务器上有多个GPU可以支配,我们希望同时利用所有的GPU来并行这一过程,加速向量化。

代码

就几行代码,不废话了

from sentence_transformers import SentenceTransformer#Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == '__main__':#Create a large list of 100k sentencessentences = ["This is sentence {}".format(i) for i in range(100000)]#Define the modelmodel = SentenceTransformer('all-MiniLM-L6-v2')#Start the multi-process pool on all available CUDA devicespool = model.start_multi_process_pool()#Compute the embeddings using the multi-process poolemb = model.encode_multi_process(sentences, pool)print("Embeddings computed. Shape:", emb.shape)#Optional: Stop the proccesses in the poolmodel.stop_multi_process_pool(pool)

注意:一定要加if __name__ == '__main__':这一句,不然报如下错:

RuntimeError: An attempt has been made to start a new process before thecurrent process has finished its bootstrapping phase.This probably means that you are not using fork to start yourchild processes and you have forgotten to use the proper idiomin the main module:if __name__ == '__main__':freeze_support()...The "freeze_support()" line can be omitted if the programis not going to be frozen to produce an executable.

其实官方已经给出代码啦,我只不过复制粘贴了一下,代码位置:computing_embeddings_multi_gpu.py

官方还给出了流式encode的例子,也是多GPU并行的,如下:

from sentence_transformers import SentenceTransformer, LoggingHandler
import logging
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdmlogging.basicConfig(format='%(asctime)s - %(message)s',datefmt='%Y-%m-%d %H:%M:%S',level=logging.INFO,handlers=[LoggingHandler()])#Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes.
if __name__ == '__main__':#Set paramsdata_stream_size = 16384  #Size of the data that is loaded into memory at oncechunk_size = 1024  #Size of the chunks that are sent to each processencode_batch_size = 128  #Batch size of the model#Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/streamdataset = load_dataset('yahoo_answers_topics', split='train', streaming=True)dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size)#Define the modelmodel = SentenceTransformer('all-MiniLM-L6-v2')#Start the multi-process pool on all available CUDA devicespool = model.start_multi_process_pool()for i, batch in enumerate(tqdm(dataloader)):#Compute the embeddings using the multi-process poolsentences = batch['best_answer']batch_emb = model.encode_multi_process(sentences, pool, chunk_size=chunk_size, batch_size=encode_batch_size)print("Embeddings computed for 1 batch. Shape:", batch_emb.shape)#Optional: Stop the proccesses in the poolmodel.stop_multi_process_pool(pool)

官方案例:computing_embeddings_streaming.py

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.105.01   Driver Version: 515.105.01   CUDA Version: 11.7     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A800-SXM...  On   | 00000000:23:00.0 Off |                    0 |
| N/A   58C    P0   297W / 400W |  75340MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA A800-SXM...  On   | 00000000:29:00.0 Off |                    0 |
| N/A   71C    P0   352W / 400W |  80672MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   2  NVIDIA A800-SXM...  On   | 00000000:52:00.0 Off |                    0 |
| N/A   68C    P0   398W / 400W |  75756MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   3  NVIDIA A800-SXM...  On   | 00000000:57:00.0 Off |                    0 |
| N/A   58C    P0   341W / 400W |  75994MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   4  NVIDIA A800-SXM...  On   | 00000000:8D:00.0 Off |                    0 |
| N/A   56C    P0   319W / 400W |  70084MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   5  NVIDIA A800-SXM...  On   | 00000000:92:00.0 Off |                    0 |
| N/A   70C    P0   354W / 400W |  76314MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   6  NVIDIA A800-SXM...  On   | 00000000:BF:00.0 Off |                    0 |
| N/A   73C    P0   360W / 400W |  75876MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
|   7  NVIDIA A800-SXM...  On   | 00000000:C5:00.0 Off |                    0 |
| N/A   57C    P0   364W / 400W |  80404MiB / 81920MiB |    100%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+

嘎嘎快啊

http://www.mmbaike.com/news/105109.html

相关文章:

  • 网站管理系统怎么做移动网站如何优化排名
  • 网站建设课程心得体会百度客服工作内容
  • 企业网站的建设 英文摘要谷歌搜索引擎镜像
  • 网站蜘蛛爬行google app
  • 石家庄网站制作招聘实体店怎么推广引流
  • 桂林什么公司做网站推广好bt磁力王
  • 站长权重nba季后赛最新排名
  • 手机网站商城建设答辩爱站之家
  • 图书馆门户网站建设会议记录百度网页入口官网
  • 网页设计个人实训报告抖音搜索seo排名优化
  • 第三方网站分类达人介绍
  • 做公司网站需要注意哪些福州网站排名
  • wordpress 高德地图seo关键词挖掘工具
  • 电子商务网站开发前言网站排名推广推荐
  • 做音乐网站用什么程序吸引人的推广标题
  • 濮阳做网站的电话山东seo推广
  • 深圳网站建设网络推广百度关键词排名点击器
  • wpf算是网站开发吗如何查询网站收录情况
  • 设计类网站开发策划书小说风云榜
  • wordpress网站怎么优化怎么做网站模板
  • 做全网营销型网站建设软文推广服务
  • 企业信用公示信息系统(全国)官网宁波网站排名优化seo
  • 昆明地推业务推广公司关键词优化的原则
  • 昆明网站建设哪家最好西安百度推广联系方式
  • 如何对网站进行分析一个新手怎么做推广
  • 专业网站建设团队网站被禁用如何解决
  • 甘肃做网站营销渠道策略有哪些
  • 做网站设计工资多少钱网络推广应该怎么做啊
  • iis日志 网站攻击怎么自己做网站推广
  • 纯静态网站怎么做连接友谊