当前位置: 首页 > news >正文

经营网站需要注意什么cms网站模板

经营网站需要注意什么,cms网站模板,网站定做,福州seo代理商Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance Github 摘要 近期研究表明,扩散模型能够生成高质量样本,但其质量在很大程度上依赖于采样引导技术,如分类器引导(CG)和无分类器引导&#xff…

Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance
Github

摘要

近期研究表明,扩散模型能够生成高质量样本,但其质量在很大程度上依赖于采样引导技术,如分类器引导(CG)和无分类器引导(CFG)。这些技术在无条件生成或诸如图像恢复等各种下游任务中往往并不适用。在本文中,我们提出了一种新颖的采样引导方法,称为Perturbed-Attention Guidance(PAG),它能在无条件和条件设置下提高扩散样本的质量,并且无需额外的训练或集成外部模块。PAG 旨在通过去噪过程逐步增强样本的结构。它通过用单位矩阵替换 UNet 中的self-attention map来生成结构退化的中间样本,这是考虑到自注意力机制捕捉结构信息的能力,并引导去噪过程远离这些退化样本。在 ADM 和 Stable Diffusion 中,PAG 在条件甚至无条件场景下都显著提高了样本质量。此外,在诸如空提示的 ControlNet 以及图像修复(如修补和去模糊)等现有引导(如 CG 或 CFG)无法充分利用的各种下游任务中,PAG 也显著提高了基线性能。
在这里插入图片描述
研究表明,在diffusion U-Net的self-attention 模块中,query-key 主要影响structure ,values主要影响appearance。
在这里插入图片描述
如果直接扰动Vt 的话,会导致 out-of-distribution (OOD),因此选择使用单位矩阵替换query-key 部分。
在这里插入图片描述
在这里插入图片描述
那么具体扰动Unet的哪一部分呢?作者使用了5k个样本,在PAG guidance scale s = 2.5 and DDIM 25 step的条件下,表现最好的是mid-block “m0”
在这里插入图片描述

代码

Diffusers 已经支持PAG用在多种任务中,并且可以和ControlNet、 IP-Adapter 一起使用。

from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torchpipeline = AutoPipelineForText2Image.from_pretrained("~/.cache/modelscope/hub/AI-ModelScope/stable-diffusion-xl-base-1___0",enable_pag=True,  ##addpag_applied_layers=["mid"], ##addtorch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()prompt = "an insect robot preparing a delicious meal, anime style"
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipeline(prompt=prompt,num_inference_steps=25,guidance_scale=7.0,generator=generator,pag_scale=2.5,
).imagesimages[0].save("pag.jpg")

PAG代码细节

如果同时使用PAG和CFG,那么输入到Unet中prompt_embeds定义如下,也就是[uncond,cond,cond]

    def _prepare_perturbed_attention_guidance(self, cond, uncond, do_classifier_free_guidance):cond = torch.cat([cond] * 2, dim=0)if do_classifier_free_guidance:cond = torch.cat([uncond, cond], dim=0)return cond

PAGCFGIdentitySelfAttnProcessor2_0计算,其中[uncond,cond]正常计算SA,第二个cond则计算PSA。

class PAGCFGIdentitySelfAttnProcessor2_0:r"""Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0).PAG reference: https://arxiv.org/abs/2403.17377"""def __init__(self):if not hasattr(F, "scaled_dot_product_attention"):raise ImportError("PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")def __call__(self,attn: Attention,hidden_states: torch.FloatTensor,encoder_hidden_states: Optional[torch.FloatTensor] = None,attention_mask: Optional[torch.FloatTensor] = None,temb: Optional[torch.FloatTensor] = None,) -> torch.Tensor:residual = hidden_statesif attn.spatial_norm is not None:hidden_states = attn.spatial_norm(hidden_states, temb)input_ndim = hidden_states.ndimif input_ndim == 4:batch_size, channel, height, width = hidden_states.shapehidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)# chunkhidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])# original pathbatch_size, sequence_length, _ = hidden_states_org.shapeif attention_mask is not None:attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)# scaled_dot_product_attention expects attention_mask shape to be# (batch, heads, source_length, target_length)attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])if attn.group_norm is not None:hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)query = attn.to_q(hidden_states_org)key = attn.to_k(hidden_states_org)value = attn.to_v(hidden_states_org)inner_dim = key.shape[-1]head_dim = inner_dim // attn.headsquery = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)# the output of sdp = (batch, num_heads, seq_len, head_dim)# TODO: add support for attn.scale when we move to Torch 2.1hidden_states_org = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)hidden_states_org = hidden_states_org.to(query.dtype)# linear projhidden_states_org = attn.to_out[0](hidden_states_org)# dropouthidden_states_org = attn.to_out[1](hidden_states_org)if input_ndim == 4:hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)# perturbed path (identity attention)batch_size, sequence_length, _ = hidden_states_ptb.shapeif attn.group_norm is not None:hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)value = attn.to_v(hidden_states_ptb)hidden_states_ptb = valuehidden_states_ptb = hidden_states_ptb.to(query.dtype)# linear projhidden_states_ptb = attn.to_out[0](hidden_states_ptb)# dropouthidden_states_ptb = attn.to_out[1](hidden_states_ptb)if input_ndim == 4:hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)# cathidden_states = torch.cat([hidden_states_org, hidden_states_ptb])if attn.residual_connection:hidden_states = hidden_states + residualhidden_states = hidden_states / attn.rescale_output_factorreturn hidden_states

经过Unet后,noise_pred的计算方法。

    def _apply_perturbed_attention_guidance(self, noise_pred, do_classifier_free_guidance, guidance_scale, t, return_pred_text=False):r"""Apply perturbed attention guidance to the noise prediction.Args:noise_pred (torch.Tensor): The noise prediction tensor.do_classifier_free_guidance (bool): Whether to apply classifier-free guidance.guidance_scale (float): The scale factor for the guidance term.t (int): The current time step.return_pred_text (bool): Whether to return the text noise prediction.Returns:Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: The updated noise prediction tensor after applyingperturbed attention guidance and the text noise prediction."""pag_scale = self._get_pag_scale(t)if do_classifier_free_guidance:noise_pred_uncond, noise_pred_text, noise_pred_perturb = noise_pred.chunk(3)noise_pred = (noise_pred_uncond+ guidance_scale * (noise_pred_text - noise_pred_uncond)+ pag_scale * (noise_pred_text - noise_pred_perturb))else:noise_pred_text, noise_pred_perturb = noise_pred.chunk(2)noise_pred = noise_pred_text + pag_scale * (noise_pred_text - noise_pred_perturb)if return_pred_text:return noise_pred, noise_pred_textreturn noise_pred
http://www.mmbaike.com/news/106200.html

相关文章:

  • 鹤壁网站推广今日新闻头条官网
  • 渭南做网站费用内容营销成功案例
  • 外贸网站的作用企业网站优化解决方案
  • 统战部网站 微信公众号建设新媒体运营是做什么
  • 开发网站价格网页制作模板
  • 如何选择网站制作公司企业广告宣传
  • 做图片推广的网站鄂州网站seo
  • 政务公开与网站建设的矛盾北京优化网站方法
  • 企业建网站品牌重庆网站制作公司
  • ucc工业设计潜江seo
  • 网站开发的高级阶段包括长春seo主管
  • 网站建设哪个公司好知乎html简单网页成品
  • app运营专员上海网站优化
  • 教育部精品课程网站购买链接平台
  • 聊城做网站好的公司seo搜索引擎优化技术
  • 西安做兼职网站设计百度营销官网
  • 北京做网站公司推荐百度竞价代理商
  • 怎么做付款链接网站无锡百度快速优化排名
  • 做家簇图像网站浙江企业seo推广
  • 网站付款接口这么做网站关键词排名手机优化软件
  • 网站的友情链接做多少个比较合适深圳优化seo排名
  • 比特币在美国的网站做开源怎么做百度关键词排名
  • 北京网站开发教师招聘买链接网
  • 宝塔自助建站源码磁力
  • 天津网站建站推广seo需要掌握哪些技术
  • 搜索引擎seo关键词优化方法专业seo网站优化推广排名教程
  • 云主机如何做网站今日热点新闻15条
  • 企业网站货物查询怎么做一个域名大概能卖多少钱
  • 凡客诚品羽绒服seo百度首页排名业务
  • 帮别人做视频剪辑的网站竞价排名