当前位置: 首页 > news >正文

西宁做网站君博相约保定seo排名外包

西宁做网站君博相约,保定seo排名外包,肯德基的网站建设,微网站销售简化的房价模型 假设1:影响房价的关键因素时卧室个数,卫生间和居住面积,记为 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​ 假设2:成交价时关键因素的加权和: y w 1 x 1 w 2 x 2 w 3 x 3 b y w_1x_1w_2x_2w_3x…

简化的房价模型

假设1:影响房价的关键因素时卧室个数,卫生间和居住面积,记为 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3

假设2:成交价时关键因素的加权和:
y = w 1 x 1 + w 2 x 2 + w 3 x 3 + b y = w_1x_1+w_2x_2+w_3x_3+b y=w1x1+w2x2+w3x3+b
​ 权重和偏差的实际值在后面决定

范数

L p 范数: ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p L_p范数:||x||_p =(\sum^n _{i=1}|x_i|^p)^{\frac 1p}\\ Lp范数:∣∣xp=(i=1nxip)p1

常用的有 L 1 L_1 L1范数和 L 2 L_2 L2范数

L1 范数是指向量中各个元素绝对值之和,也叫“稀疏规则算子”(Lasso regularization)。范数作为正则项,会让模型参数θ稀疏化, 既让模型参数向量里为0的元素尽量多。在支持向量机(support vector machine)学习过程中,实际是一种对于成本函数(cost function)求解最优,得出稀疏解。

L2 范数作为正则项式让模型参数尽量小,但不会为0,尽量让每个特征对预测值都有一些小的贡献,得出稠密解。
在梯度下降算法的迭代过程中,实际上是在成本函数的等高线上跳跃,并最终收敛在误差最小的点上(此处为未加正则项之前的成本误差)。而正则项的本质就是惩罚。 模型在训练的过程中,如果没有遵守正则项所表达的规则,那么成本会变大,即受到了惩罚,从而往正则项所表达的规则处收敛。 成本函数在这两项规则的综合作用下,正则化后的模型参数应该收敛在误差等值线与正则项等值线相切的点上。

一般的线性模型

n维输入 x = [ x 1 , x 2 , ⋯ , x n ] T x=[x_1,x_2,\cdots,x_n]^T x=[x1,x2,,xn]T

线性模型有一个n维权重和一个标量偏差: w = [ w 1 , w 2 , ⋯ , w n ] T w = [w_1,w_2,\cdots,w_n]^T w=[w1,w2,,wn]T

输出是输入的加权和 y = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + n y=w_1x_1+w_2x_2+\cdots+w_nx_n +n y=w1x1+w2x2++wnxn+n


y = < w , x > + b y=<w,x> +b y=<w,x>+b
可以看作是单层的神经网络

在这里插入图片描述

衡量预估质量(损失函数)

比较真实值和预估值,损失函数。

例如 y y y是真实值, y ^ \hat y y^是估计值,则可以使用平方损失函数 l ( y , y ^ ) = 1 2 ( y − y ^ ) 2 l(y,\hat y)=\frac 12 (y-\hat y)^2 l(y,y^)=21(yy^)2

参数学习

将训练数据带入,损失函数展开为
l ( X , y , w , b ) = 1 2 n ∑ i = 1 n ( y i − < x i , w > − b ) 2 = 1 2 n ∣ ∣ y − X w − b ∣ ∣ 2 l(X,y,w,b)=\frac{1}{2n}\sum^n_{i=1}(y_i-<x_i,w>-b)^2 =\frac {1}{2n}||y-Xw-b||^2 l(X,y,w,b)=2n1i=1n(yi<xi,w>b)2=2n1∣∣yXwb2
最小化损失来学习参数:
w ∗ , b ∗ = a r g m i n w , b l ( X , y , w , b ) w*,b* = arg\ min_{w,b} l(X,y,w,b) w,b=arg minw,bl(X,y,w,b)

优化方法

梯度下降

  • 挑选一个初始值 w 0 w_0 w0

  • 重复迭代参数 t = 1 , 2 , 3 , ⋯ t=1,2,3,\cdots t=1,2,3,

    w t = w t − 1 − α ∂ l ∂ w t − 1 w_t = w_{t-1}-\alpha \frac{\partial l}{\partial w_{t-1}} wt=wt1αwt1l

沿梯度方向将增加损失函数值,学习率:步长的超参数,不能太小和太大,太小会导致计算太多次,太大会迈过了,在不停的振荡。

在这里插入图片描述

小批量随机梯度下降

​ 在整个训练集上算梯度太贵,一个深度神经网络模型可能需要数分钟到数小时

​ 我们可以随机采样b个样本 i 1 , i 2 , ⋯ , i b i_1,i_2,\cdots,i_b i1,i2,,ib来近似损失
1 b ∑ i ∈ I b l ( x i , y i , w ) \frac{1}{b}\sum_{i\in I_b} l(x_i,y_i,w) b1iIbl(xi,yi,w)
​ b是批量的大小,另一个重要的超参数

​ 批量大小也不能太小,每次计算量太小,不适合并行来最大利用计算资源;不能太大,内存消耗增加浪费计算,例如如果所有样本都是相同的。

​ 小批量梯度下降是深度学习默认的求解算法。

pytorch实现线性回归

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nndef load_array(data_arrays, batch_size, is_train=True):"""构建一个PyTorch数据迭代器,随机挑选b个元素,is_train表明是随机的"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=is_train)true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)  # 根据输入的两个参数w,b生成1000个随机数据batch_size = 10
data_iter = load_array((features, labels), batch_size, is_train=False)# print(next(iter(data_iter)))net = nn.Sequential(nn.Linear(2, 1))  # sequential是将层分为list of layers,可以通过下标来访问不同的层
# Linear指使用神经网络的线性层模型,输入有两个参数,输出有一个参数net[0].weight.data.normal_(mean=0, std=0.01)  # 将第一层的layer中的参数w设置为(0,0.01)的正态分布
net[0].bias.data.fill_(0)  # 将偏差b设置为0'''均方误差MSEloss'''
loss = nn.MSELoss()
'''SGD随机梯度下降'''
trainer = torch.optim.SGD(net.parameters(), lr=0.03)  # 传入神经网络的所有参数,学习率为0.03num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X), y)trainer.zero_grad()#梯度清零l.backward()#计算梯度trainer.step()#更新模型l = loss(net(features), labels)print(f'epoch: {epoch+1}, loss: {l:f}')
http://www.mmbaike.com/news/107237.html

相关文章:

  • 如何用phpstorm做网站搜索引擎的优化方法有哪些
  • 殡仪馆做网站的好处seo手机关键词网址
  • 设计师服务平台素材下载seo1搬到哪里去了
  • 做网站公司哪好谷歌seo外包公司哪家好
  • 自动生成代码百度seo排名优化
  • 大连网站开发师文案写作软件app
  • 百度网站开发语言巨量引擎官网
  • 网站文案怎么做高端网站建设的公司
  • 做网站多久学会网络营销公司排名
  • h5高端网站开发seo5
  • 泰州seo顾问服务泰州seo外包
  • 上海网站建设公司电制定营销推广方案
  • 网站开发 不好 怎么说seo描述是什么
  • 芜湖北京网站建设app推广公司怎么对接业务
  • 告白网站怎么做关键词广告
  • 河间网站制作公司百度关键词权重查询
  • 移除wordpress模板潍坊seo网络推广
  • 河南省住房和城乡建设部网站可以推广的软件
  • 巫山做网站那家好嘉兴百度seo
  • 网站制作成app企业网站设计论文
  • 义乌有什么企业网站吗百度投诉中心24小时电话
  • 初期网站价值网站外包一般多少钱啊
  • c web网站开发实例长春做网络优化的公司
  • 小型营销企业网站建设策划网络营销策划方案的目的
  • 广州网站建设是什么网站制作推广电话
  • 关于做奶妈的视频网站凯里seo排名优化
  • 陕西今日头条yoast seo
  • 杭州网站建设文章最全的百度网盘搜索引擎
  • 学做网站 空间 域名贴吧友情链接在哪
  • 亚马逊网站建设的目的网站描述和关键词怎么写