当前位置: 首页 > news >正文

网站建设如何测试网址提交

网站建设如何测试,网址提交,做pc端网站特色,品牌设计和广告设计人工智能学习概述—快手视频 人工智能学习32-Keras手写体识别—快手视频 人工智能学习32-Keras手写体识别—快手视频 人工智能学习32-Keras手写体识别—快手视频 人工智能学习32-Keras手写体识别—快手视频 人工智能学习32-Keras手写体识别—快手视频 #从keras.layers 导入 …

人工智能学习概述—快手视频
人工智能学习32-Keras手写体识别—快手视频
人工智能学习32-Keras手写体识别—快手视频
人工智能学习32-Keras手写体识别—快手视频
人工智能学习32-Keras手写体识别—快手视频
人工智能学习32-Keras手写体识别—快手视频
在这里插入图片描述
在这里插入图片描述

#从keras.layers 导入 2维卷积层,全连接层,最大池化层,拉平层,漏失层,最大平均池
化层 
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout, 
GlobalAveragePooling2D 
#从keras.datasets 引入 mnist 数据集,已经标注过的数据集 
from keras.datasets import mnist 
#引入keras顺序模型Sequential 
from keras import Sequential 
import keras 
#引入numpy类库,方便矩阵操作 
import numpy as np 
#引入图形类库,方便图形显示 
import matplotlib.pyplot as plt 
#引入os操作系统类库,操作本地文件和目录 
import os 
#避免多库依赖警告信息 
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' 
#设置神经网络模型存储目录,当前python源文件所在目录上一级下的saved_models目录 
save_dir = '../saved_models' 
#如果目录saved_models不存在,新建此目录 
if not os.path.isdir(save_dir): 
os.makedirs(save_dir) 
#神经网络模块名称 
model_name = 'numpred_keras_trained_model.h5' 
#设置神经网络分类数量,0-9个数字需要10个分类 
num_classes = 10 
#小批量训练时设置每次训练样品批量 
batch_size = 128 
#网络训练次数,一次前向传递和一次反馈成为一个epoch 
epochs = 10 
#手写体图片高和宽,像素数 
img_rows, img_cols = 28, 28 
#输入手写体图片维度数,高**通道数=28*28*1,灰度图通道数为1,彩色图(RGB)通道数
为3 
input_shape = (img_rows, img_cols, 1) 
#从数据集mnist装入训练数据集和测试数据集,mnist提供load_data方法 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
#灰度图编码范围0-255,将编码归一化,转化为0-1之间数值 
x_train = x_train.astype('float32') / 255.0 
x_test = x_test.astype('float32') / 255.0 
#将训练数据集和测试数据集转化为张量(batch,height,width,channel) 
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) 
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) 
#将训练和测试标注数据转化为张量(batch,num_classes) 
y_train = keras.utils.to_categorical(y_train, num_classes) 
y_test = keras.utils.to_categorical(y_test, num_classes) 
#定义Keras顺序模型Sequential 
model = Sequential() 
#添加二维卷积层,通道为32,核函数3*3,激活函数Relu,输入张量(28,28,1) 
model.add(Conv2D(filters=32, 
kernel_size=(3, 
input_shape=input_shape)) 
#添加二维卷积层,通道为64,核函数3*3,激活函数Relu 
3), 
activation='relu', 
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) 
#添加最大池化,核大小(2*2) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
#添加Dropout漏失层,漏失比例20% 
model.add(Dropout(rate=0.2)) 
#添加拉平层,将张量拉平为一维向量 
model.add(Flatten()) 
#添加Dropout漏失层,漏失比例50% 
model.add(Dropout(rate=0.5)) 
#添加全连接层,输出尺寸128维向量,激活函数为Relu 
model.add(Dense(units=128, activation='relu')) 
#添加输出层,输出尺寸10维向量,激活函数为Softmax,将输入图片映射为0-9个数字 
model.add(Dense(num_classes, activation='softmax')) 
#编译模型,损失函数采用交叉熵,优化器采用Adadelta,获取统计数据为准确率 
model.compile(loss=keras.losses.categorical_crossentropy, 
optimizer=keras.optimizers.Adadelta(), metrics=['acc']) 
#显示网络层次结构 
model.summary() 
#训练模型 
#x_train 为训练数据集,y_train为训练数据集标注结果 
#batch_size 为小批量训练每次训练样品数,epochs为训练次数 
#verbose=1 为输出训练过程信息 
# validation_data=(x_test,y_test)是测试数据集,目录为衡量模型预测准确率 
model.fit(x_train, y_train, 
batch_size=batch_size, 
epochs=epochs, 
verbose=1, 
validation_data=(x_test, y_test) 
) 
#神经网络模型保持目录 
model_path = os.path.join(save_dir, model_name) 
#保存训练后的神经网络模型 
model.save(model_path) 
print('Model save at file %s' % model_path) 
#测试神经网络模型预测效果 
n = 10 #取出测试数据集中前10个样本 
#使用训练好的模型预测结果 
pred = model.predict(x_test[:n], n) 
#定义图形界面分为310列显示图片 
plt.figure(figsize=(10, 3)) 
#循环显示每幅图片,标注真实值,和网络预测值 
for i in range(n): 
#定义图片输出位置 
plt.subplot(1, 10, i+1) 
plt.subplots_adjust(wspace=2) 
#格式化图片格式 
t = x_test[i].reshape(28, 28) 
#显示图片 
plt.imshow(t, cmap='gray') 
if pred[i].argmax() == y_test[i].argmax(): 
#预测正确时,使用绿色显示真实值和预测值 
plt.title('%d,%d' 
% 
color='green') 
else: 
(pred[i].argmax(), 
#预测错误时,使用红色显示真实值和预测值 
y_test[i].argmax()), 
plt.title('%d,%d' % (pred[i].argmax(), y_test[i].argmax()), color='red') 
plt.xticks([]) 
plt.yticks([]) 
#显示图片窗口 
plt.show() 

自定义手写体网络模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.mmbaike.com/news/21702.html

相关文章:

  • 长沙哪家公司做网站关键词排名优化系统
  • Hugo wordpressseo整站优化系统
  • 备案的网站域名安卓优化大师下载安装
  • 专业的企业网站定制公司太原网站优化公司
  • 旅游网站建设需求说明书二级域名网站免费建站
  • 济南富库网络技术有限公司网站页面优化包括
  • wordpress怎么使用插件下载夫唯seo视频教程
  • 网站开发赚不赚钱百度指数分析官网
  • 专业做财经直播网站苏州吴中区seo关键词优化排名
  • 网站建设自企业产品营销策划推广
  • 临沂网站建设培训学校app注册拉新平台
  • 简答题网站建设步骤每日新闻快报
  • 网站建设登录界面设计步骤电商网页
  • 企业门户网站建设与发展趋势临沂seo代理商
  • 关于政府网站建设建议临沂seo排名外包
  • 黑龙江省建设局网站首页重庆专业seo
  • 新手搭建论坛己做网站公司广告推广
  • 做网站如何保证询盘数量太原seo霸屏
  • 企业大型网站开发seo现在还有前景吗
  • 最简单的网站公司网站设计要多少钱
  • 网站域名备案需要什么国产系统2345
  • 武汉企业网站做优化广告优化师
  • 做英文网站用目录还是子域名今日国内新闻头条大事
  • 天津百度网站快速优化网站优化排名方案
  • 惠州做网站好的公司网络推广竞价是什么
  • 都江堰网站建设兰州网络推广电话
  • 国内做日化官方网站有了域名如何建立网站
  • 黄色色调 网站网络站点推广的方法
  • 上海建设安全生产协会网站最有效的恶意点击软件
  • 旅游网站制作方案如何做品牌运营与推广