当前位置: 首页 > news >正文

做网站全自动cpa引流5118

做网站全自动cpa引流,5118,惠州做网站 百度优化,刘金鹏做网站靠谱吗🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目录 代码总结与心得 代码 关于CGAN的原理上节已经讲过,这次主要是编写代码加载上节训练后的模型来进行指定条件的生成 图像的生成其实只需要使用…
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

目录

  • 代码
  • 总结与心得


代码

关于CGAN的原理上节已经讲过,这次主要是编写代码加载上节训练后的模型来进行指定条件的生成

图像的生成其实只需要使用Generator模型,判别器模型是在训练过程中才用的。

# 库引入
from torch.autograd import Variable
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optim
import torchdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 超参数
latent_dim = 100
n_classes = 3
embedding_dim = 100# 工具函数
def weights_init(m):classname = m.__class__.__name__if classname.find('Conv') != -1:torch.nn.init.normal_(m.weight, 0.0, 0.02)elif classname.find('BatchNorm') != -1:torch.nn.init.normal_(m.weight, 1.0, 0.02)torch.nn.init.zeros_(m.bias)# 模型
class Generator(nn.Module):def __init__(self):super().__init__()self.label_conditioned_generator = nn.Sequential(nn.Embedding(n_classes, embedding_dim),nn.Linear(embedding_dim, 16))self.latent = nn.Sequential(nn.Linear(latent_dim, 4*4*512),nn.LeakyReLU(0.2, inplace=True))self.model = nn.Sequential(nn.ConvTranspose2d(513, 64*8, 4, 2, 1, bias=False),nn.BatchNorm2d(64*8, momentum=0.1, eps=0.8),nn.ReLU(True),nn.ConvTranspose2d(64*8, 64*4, 4, 2, 1, bias=False),nn.BatchNorm2d(64*4, momentum=0.1, eps=0.8),nn.ReLU(True),nn.ConvTranspose2d(64*4, 64*2, 4, 2, 1, bias=False),nn.BatchNorm2d(64*2, momentum=0.1, eps=0.8),nn.ReLU(True),nn.ConvTranspose2d(64*2, 64*1, 4, 2, 1, bias=False),nn.BatchNorm2d(64*1, momentum=0.1, eps=0.8),nn.ReLU(True),nn.ConvTranspose2d(64*1, 3, 4, 2, 1, bias=False),nn.Tanh())def forward(self, inputs):noise_vector, label = inputslabel_output = self.label_conditioned_generator(label)label_output = label_output.view(-1, 1, 4, 4)latent_output = self.latent(noise_vector)latent_output = latent_output.view(-1, 512, 4, 4)concat = torch.cat((latent_output, label_output), dim=1)image = self.model(concat)return imagegenerator = Generator().to(device)
generator.apply(weights_init)
print(generator)
Generator((label_conditioned_generator): Sequential((0): Embedding(3, 100)(1): Linear(in_features=100, out_features=16, bias=True))(latent): Sequential((0): Linear(in_features=100, out_features=8192, bias=True)(1): LeakyReLU(negative_slope=0.2, inplace=True))(model): Sequential((0): ConvTranspose2d(513, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(512, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)(4): BatchNorm2d(256, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True)(6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)(7): BatchNorm2d(128, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)(8): ReLU(inplace=True)(9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)(10): BatchNorm2d(64, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)(11): ReLU(inplace=True)(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)(13): Tanh())
)
from numpy.random import randint, randn
from numpy import linspace
from matplotlib import pyplot, gridspec# 加载训练好的权重
generator.load_state_dict(torch.load('generator_epoch_300.pth'), strict=False)
# 关闭梯度积累
generator.eval()# 生成随机变量
interpolated = randn(100)
interpolated = torch.tensor(interpolated).to(device).type(torch.float32)# 生成条件变量
label = 0 # 生成第0个分类的图像
labels = torch.ones(1) * label
labels = labels.to(device).unsqueeze(1).long()# 执行生成
predictions = generator((interpolated, labels))
predictions = predictions.permute(0, 2, 3, 1).detach().cpu()# 屏蔽警告
import warnings
warnings.filterwarnings('ignore')# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 防止负号无法显示
plt.rcParams['axes.unicode_minus']= False
# 设置图的分辨率
plt.rcParams['figure.dpi'] = 100# 绘图
plt.figure(figsize=(8, 3))
pred = (predictions[0, :, :, :] + 1) * 127.5
pred = np.array(pred)
plt.imshow(pred.astype(np.uint8))
plt.show()

生成分类0
我们将分类修改为1重新生成一次

生成分类1

总结与心得

在本次实验的过程中,我了解了CGAN模型在训练完成后,后续如何使用的步骤:

  1. 保存训练好的生成器的权重
  2. 使用生成器加载
  3. 生成随机分布变量用于生成图像
  4. 生成指定的标签,并转换成控制向量
  5. 执行生成操作

另外关于警告和matplotlib设置中文字体的方式也是经常会用到的技巧。

http://www.mmbaike.com/news/23849.html

相关文章:

  • 企业网站建设日程表规划服务网站推广方案
  • 小蘑菇网站开发长沙靠谱seo优化
  • 网站工具查询自建站
  • 网站框架互联网媒体广告公司
  • 本地建设多个网站链接2023年8月新冠又来了
  • 台州建站服务2023年8月疫情严重吗
  • 海拉尔做网站多少钱外贸seo建站
  • 建设网站企业邮箱网站建设服务个人推广网站
  • 如何填写网站开发验收单网络营销成功案例分析
  • 南宁seo网站排名优化搜索引擎营销经典案例
  • 企业做网站的用途网站设计的毕业论文
  • wordpress more标签 无效seo难不难学
  • 国人原创wordpress主题排行河南百度关键词优化排名软件
  • 高端做网站多少钱seo外包公司多少钱
  • 镇江唐唐网络科技有限公司深圳百度网站排名优化
  • 做网站除了有服务器还需要什么问题深圳正规seo
  • 网站党建专栏建设方案优化服务平台
  • wordpress模板 站长百度网页版链接
  • 扬州市建设局网站域名注册商怎么查
  • 建设网站细节微信管理软件
  • 自己如何做网站优化网站生成app工具
  • html网页设计logo代码seo数据是什么
  • 自己怎么样做网站百度热门排行榜
  • 建筑工人招聘网站怎么做网络营销策划需要包括哪些内容
  • wordpress企业文化模板下载关键词优化软件排行
  • 钟表商城网站建设方案seo外链招聘
  • 郑州网站推广技术制作网站需要多少费用
  • 软件开发建设网站搜索引擎优化的五个方面
  • 动易网站开发百度竞价推广怎么做效果好
  • 网站建设的技巧有哪些上海seo有哪些公司