当前位置: 首页 > news >正文

mac服务器 做网站fifa最新世界排名

mac服务器 做网站,fifa最新世界排名,网站建设窗口框架,武汉做网站制作Scikit-Learn决策树 1、决策树分类2、Scikit-Learn决策树分类2.1、Scikit-Learn决策树API2.2、Scikit-Learn决策树初体验2.3、Scikit-Learn决策树实践(葡萄酒分类) 1、决策树分类 2、Scikit-Learn决策树分类 2.1、Scikit-Learn决策树API 官方文档&#…

Scikit-Learn决策树

    • 1、决策树分类
    • 2、Scikit-Learn决策树分类
      • 2.1、Scikit-Learn决策树API
      • 2.2、Scikit-Learn决策树初体验
      • 2.3、Scikit-Learn决策树实践(葡萄酒分类)



1、决策树分类


2、Scikit-Learn决策树分类

2.1、Scikit-Learn决策树API


官方文档:https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

中文官方文档:https://scikit-learn.org.cn/view/784.html

2.2、Scikit-Learn决策树初体验


下面我们使用Scikit-Learn提供的API制作两个交错的半圆形状数据集来演示Scikit-Learn决策树

1)制作数据集

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets# 生成两个交错的半圆形状数据集
X, y = datasets.make_moons(noise=0.25, random_state=666)
plt.scatter(X[y == 0, 0], X[y == 0, 1])
plt.scatter(X[y == 1, 0], X[y == 1, 1])
plt.show()

在这里插入图片描述

2)训练决策树分类模型

from sklearn.tree import DecisionTreeClassifier      # 决策树分类器# 使用CART分类树的默认参数
dt_clf = DecisionTreeClassifier()
# dt_clf = DecisionTreeClassifier(max_depth=2, max_leaf_nodes=4)
# 训练拟合
dt_clf.fit(X, y)

3)绘制决策边界

# 绘制决策边界
decision_boundary_fill(dt_clf, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y == 0, 0], X[y == 0, 1])
plt.scatter(X[y == 1, 0], X[y == 1, 1])
plt.show()

其中,使用到的绘制函数详见文章:传送门

当使用CART分类树的默认参数时,其决策边界如图所示:

在这里插入图片描述
由图可见,在不加限制的情况下,一棵决策树会生长到所有的叶子都是纯净的或者或者没有更多的特征可用为止。这样的决策树往往会过拟合,也就是说,它在训练集上表现的很好,而在测试集上却表现的很糟糕

当我们限制决策树的最大深度max_depth=2,并且最大叶子节点数max_leaf_nodes=4时,其决策边界如下图所示:

在这里插入图片描述
通过限制一些参数,对决策树进行剪枝,可以让我们的决策树具有更好的泛化性

2.3、Scikit-Learn决策树实践(葡萄酒分类)


2.3.1、葡萄酒数据集

葡萄酒(Wine)数据集是来自加州大学欧文分校(UCI)的公开数据集,这些数据是对意大利同一地区种植的葡萄酒进行化学分析的结果。数据集共178个样本,包括三个不同品种,每个品种的葡萄酒中含有13种成分(特征)、一个类别标签,分别使是0/1/2来代表葡萄酒的三个分类

数据集的属性信息(13特征+1标签)如下:

from sklearn.datasets import load_winewine = load_wine()
data = pd.DataFrame(data=wine.data, columns=wine.feature_names)
data['class'] = wine.target
print(data.head().to_string())
'''alcohol  malic_acid   ash  alcalinity_of_ash  magnesium  total_phenols  flavanoids  nonflavanoid_phenols  proanthocyanins  color_intensity   hue  od280/od315_of_diluted_wines  proline  class
0    14.23        1.71  2.43               15.6      127.0           2.80        3.06                  0.28             2.29             5.64  1.04                          3.92   1065.0      0
1    13.20        1.78  2.14               11.2      100.0           2.65        2.76                  0.26             1.28             4.38  1.05                          3.40   1050.0      0
2    13.16        2.36  2.67               18.6      101.0           2.80        3.24                  0.30             2.81             5.68  1.03                          3.17   1185.0      0
3    14.37        1.95  2.50               16.8      113.0           3.85        3.49                  0.24             2.18             7.80  0.86                          3.45   1480.0      0
4    13.24        2.59  2.87               21.0      118.0           2.80        2.69                  0.39             1.82             4.32  1.04                          2.93    735.0      0
'''
属性/标签说明
alcohol酒精含量(百分比)
malic_acid苹果酸含量(克/升)
ash灰分含量(克/升)
alcalinity_of_ash灰分碱度(mEq/L)
magnesium镁含量(毫克/升)
total_phenols总酚含量(毫克/升)
flavanoids类黄酮含量(毫克/升)
nonflavanoid_phenols非黄酮酚含量(毫克/升)
proanthocyanins原花青素含量(毫克/升)
color_intensity颜色强度(单位absorbance)
hue色调(在1至10之间的一个数字)
od280/od315_of_diluted_wines稀释葡萄酒样品的光密度比值,用于测量葡萄酒中各种化合物的浓度
proline脯氨酸含量(毫克/升)
class分类标签(class_0(59)、class_1(71)、class_2(48))

数据集的概要信息如下:

# 数据集大小
print(wine.data.shape)      # (178, 13)
# 标签名称
print(wine.target_names)    # ['class_0' 'class_1' 'class_2']
# 分类标签
print(data.groupby('class')['class'].count())
'''
class
0    59
1    71
2    48
Name: class, dtype: int64
'''

数据集的缺失值情况:

# 缺失值:无缺失值
print(data.isnull().sum())

在这里插入图片描述
2.3.2、决策树实践(葡萄酒分类)


未完待续…

http://www.mmbaike.com/news/24662.html

相关文章:

  • 任何用c语言做网站网站搜索优化
  • 微信公众号商城网站开发竞价外包代运营公司
  • 电子商务网站建设方案书的总结上海百度推广优化排名
  • 手机输入网址怎么输入标题关键词优化报价
  • 做PPT哪个网站的素材多点蜗牛精灵seo
  • 网站制作平台能赚钱吗十大免费最亏的免费app
  • 郑州网站开发定制网站seo课程
  • 门户网站开发要多久新网站排名优化怎么做
  • 长沙百度网站制作seo基础教程
  • 制作充值网站品牌营销经典案例
  • 网站开发下载哪个绍兴seo计费管理
  • 长春做网站wang百度搜索风云榜小说排行榜
  • 关于政府网站群建设的咨询函steam交易链接怎么用
  • 手机网站 排版郑州网站建设制作
  • 做全屏式网站尺寸是多大网址收录网站
  • 百度做网站哪里可以学百度网络小说排行榜
  • 学网站开发看什么书seo网络推广方法
  • 做庭院景观的那个网站推广好网站搜索引擎优化
  • 网站开发服务费属于哪种进项舆情分析报告
  • 学做网站初入门教程网络营销推广方案有哪些
  • 淘宝官方网站登录页面网站seo服务
  • 网站建设做的好的公司网站seo博客
  • 广州网站建设方案营销推广有哪些公司
  • 开封做网站哪家好品牌网络seo方案外包
  • 个人网站对主机有什么要求杭州最好的seo公司
  • 绵阳做网站的公司有哪些百度免费安装下载
  • 网站建设方为客户提供使用说明书百度推广客服电话
  • 怎么选择做网站的公司网页自助建站
  • dedecms5.7装饰公司网站模板免费的h5制作网站
  • 合肥做双语外贸网站种子搜索