当前位置: 首页 > news >正文

php响应式网站活动推广方式都有哪些

php响应式网站,活动推广方式都有哪些,Iis wordpress无法发表文章,苏州网站推广电话养殖业的数字化和智能化是一个综合应用了互联网、物联网、人工智能、大数据、云计算、区块链等数字技术的过程,旨在提高养殖效率、提升产品质量以及促进产业升级。在这个过程中,养殖生猪的数字化智能化可以识别并管理猪的行为。通过数字化智能化系统&…

养殖业的数字化和智能化是一个综合应用了互联网、物联网、人工智能、大数据、云计算、区块链等数字技术的过程,旨在提高养殖效率、提升产品质量以及促进产业升级。在这个过程中,养殖生猪的数字化智能化可以识别并管理猪的行为。通过数字化智能化系统,可以在猪的不同生长阶段,对其体重、饮食、运动量、繁殖能力、疾病状况等各项指标进行数据分析和监测,进而实现科学喂养和疾病预防。智能化养殖不仅提高了养殖效率,也有利于提高生猪的健康水平,对疾病的预防和治疗都有积极作用,最终能提升畜禽产品的品质和农户企业的实际收益。

国内很多厂商在养猪行业里其实很早就开始布局了,基于人工智能数字化技术手段来为传统养猪行业赋能,来提升养殖效率是比较有应用前景的赛道。本文的核心思想其实是借鉴了前面课堂行为识别模型的想法,想要基于生猪养殖数据来开发构建生猪行为识别模型,基于自动化的智能化的识别计算服务可以基于识别计算结果来做出响应,这些是可以考虑后期落地应用的点不是本文的内容。

首先来看下实例效果图:

接下来我们来看下具体的数据集:

共包含猪15种主要行为,以及其他类型的行为,共有16种行为类型。

简单看下实例数据:

【打架】

【睡觉】

【玩玩具】

【进食】

GhostNet主要从深度神经网络中特征图的冗余性角度出发,以低成本高效益的方式模拟传统卷积操作的效果。GhostNet模型中的Ghost模块是传统卷积层的一个替代方案。该模块通过使用少量的传统卷积来生成部分特征图,然后对这些特征图进行简单的线性变化(作者称这种操作为廉价的线性变换),从而得到所需数量的特征图。这种操作增加了特征图的冗余性,从而在保证对输入数据全面理解的同时降低了模型的计算成本。

优点:

效率高:通过使用少量的传统卷积操作以及廉价的线性变换操作,GhostNet在保证较高识别性能的同时降低了模型的计算成本,提高了模型的运行效率。
扩展性强:由于GhostNet模型中的Ghost模块可以灵活地调整生成特征图的数量,因此该模型可以方便地扩展到其他深度神经网络结构中,具有很强的适应性。
缺点:

理论基础尚不完备:虽然GhostNet模型在基准测试中表现出色,但其理论基础尚不完备,对于其有效性以及适用范围的深入研究仍有待进一步开展。
缺乏足够的可视化支持:对于模型内部的运行机制以及特征图的具体生成过程,目前还没有详细的可视化支持,这使得模型的理解仍有待进一步加深。

在前面很多项目开发中我们使用到的轻量级的CNN模型大都是MobileNet系列的,这里我们使用的是GhostNet模型,同样是一款性能出众的模型,核心实现如下所示:

class GhostNet(nn.Module):def __init__(self, cfgs, num_classes=1000, width_mult=1.0):super(GhostNet, self).__init__()self.cfgs = cfgsoutput_channel = _make_divisible(16 * width_mult, 4)layers = [nn.Sequential(nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),)]input_channel = output_channelblock = GhostBottleneckfor k, exp_size, c, use_se, s in self.cfgs:output_channel = _make_divisible(c * width_mult, 4)hidden_channel = _make_divisible(exp_size * width_mult, 4)layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))input_channel = output_channelself.features = nn.Sequential(*layers)output_channel = _make_divisible(exp_size * width_mult, 4)self.squeeze = nn.Sequential(nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),nn.BatchNorm2d(output_channel),nn.ReLU(inplace=True),nn.AdaptiveAvgPool2d((1, 1)),)input_channel = output_channeloutput_channel = 1280self.classifier = nn.Sequential(nn.Linear(input_channel, output_channel, bias=False),nn.BatchNorm1d(output_channel),nn.ReLU(inplace=True),nn.Dropout(0.2),nn.Linear(output_channel, num_classes),)self._initialize_weights()def forward(self, x, need_fea=False):if need_fea:features, features_fc = self.forward_features(x, need_fea)x = self.classifier(features_fc)return features, features_fc, xelse:x = self.forward_features(x)x = self.classifier(x)return xdef forward_features(self, x, need_fea=False):if need_fea:input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]for idx, layer in enumerate(self.features):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xx = self.squeeze(x)return features, x.view(x.size(0), -1)else:x = self.features(x)x = self.squeeze(x)return x.view(x.size(0), -1)def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def cam_layer(self):return self.features[-1]

这是华为研究员提出来的非常能打的模型 ,感兴趣的话可以自行去了解官方的研究工作,地址在这里。如下所示:

当然了开源社区里面也有很多对应的项目,可以选择适合自己的就行了。

默认8:2的数据划分比例设置,默认200次epoch的迭代计算,结果详情如下所示:

【准确率曲线】
 

【loss曲线】 

【混淆矩阵】

当然了整体项目的开发也可以直接使用或者参考前文《眼疾识别》的方式。

http://www.mmbaike.com/news/25132.html

相关文章:

  • 酒店门户网站建设背景百度知识营销
  • 陕西网站开发公司电话个人建网站步骤
  • 网站开发面板怎么建立自己的企业网站
  • 网上做批发那个网站好seo提供服务
  • 凡科网做网站如何推广网站seo优化推广外包
  • wordpress链接跳转插件seo推广是什么
  • 长春网站建设模板服务seo网站排名的软件
  • 淮南网站建设好seo教程网站优化
  • 做网站公司法人还要拍照吗深圳全网推互联科技有限公司
  • 全球最大的平面设计网站优化网站软文
  • 个人网站上传有啥要求小红书seo是什么意思
  • 网站制作建设案例又一病毒来了比新冠可怕
  • 网站设计需求模板企业建站要多少钱
  • 提供营销型网站价格软文营销怎么写
  • wordpress那个版本好用网站排名seo教程
  • 梅州建站优化疫情二十条措施
  • 网站cc攻击用什么来做网页链接
  • 动态手机网站怎么做深圳网络推广网络
  • 龙岗做网站的公司磁力狗bt
  • 做环境设计的网站优化电池充电什么意思
  • 网购软件专业搜索引擎seo服务商
  • 网站建设完成的时间百度怎么做广告
  • 哪个网站可以做效果图赚钱seo薪酬水平
  • 网站做整合页面成都百度推广和seo优化
  • 做网站的算什么行业手机网站建设公司
  • 珠海市网站设计公司河南新站关键词排名优化外包
  • wordpress 报表系统seo网站关键词优化
  • 广西南宁市住房和城乡建设局网站怎样在百度上发布作品
  • 住建部城乡建设网站宁波seo教学
  • 怎么做网站排版大数据统计网站