当前位置: 首页 > news >正文

企业推广宣传文案北京百度seo排名点击器

企业推广宣传文案,北京百度seo排名点击器,东莞找网站设计,南海区住房城乡建设和水务局网站优质博文:IT-BLOG-CN 一、题目 给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得…

优质博文:IT-BLOG-CN

一、题目

给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的最大利润。

示例 1:
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第2天(股票价格= 1)的时候买入,在第3天(股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。

示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第1天(股票价格= 1)的时候买入,在第5天 (股票价格= 5)的时候卖出, 这笔交易所能获得利润= 5 - 1 = 4。总利润为4

示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为0

1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104

二、代码

【1】动态规划: 定义状态dp[i][0]表示第i天交易完后手里没有股票的最大利润,dp[i][1]表示第i天交易完后手里持有一支股票的最大利润(i0开始)。考虑dp[i][0]的转移方程,如果这一天交易完后手里没有股票,那么可能的转移状态为前一天已经没有股票,即dp[i−1][0],或者前一天结束的时候手里持有一支股票,即dp[i−1][1],这时候我们要将其卖出,并获得prices[i]的收益。因此为了收益最大化,我们列出如下的转移方程:dp[i][0]=max⁡{dp[i−1][0],dp[i−1][1]+prices[i]}再来考虑dp[i][1],按照同样的方式考虑转移状态,那么可能的转移状态为前一天已经持有一支股票,即dp[i−1][1],或者前一天结束时还没有股票,即dp[i−1][0],这时候我们要将其买入,并减少prices[i]的收益。可以列出如下的转移方程:dp[i][1]=max⁡{dp[i−1][1],dp[i−1][0]−prices[i]}

对于初始状态,根据状态定义我们可以知道第0天交易结束的时候dp[0][0]=0,dp[0][1]=−prices

因此,我们只要从前往后依次计算状态即可。由于全部交易结束后,持有股票的收益一定低于不持有股票的收益,因此这时候dp[n−1][0]的收益必然是大于dp[n−1][1]的,最后的答案即为dp[n−1][0]

class Solution {public int maxProfit(int[] prices) {if (prices.length < 2) {return 0;}// 思路:通过二维数组表示当前的两种状态 prices[i][0] 表示持有现金 prices[i][1]表示持有股票,每次遍历获取Maxint[][] dp = new int[prices.length][2];// 初始化0dp[0][0] = 0;dp[0][1] = -prices[0];for (int i = 1; i < prices.length; i++) {dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);}return dp[prices.length - 1][0];}
}

注意到上面的状态转移方程中,每一天的状态只与前一天的状态有关,而与更早的状态都无关,因此我们不必存储这些无关的状态,只需要将dp[i−1][0]dp[i−1][1]存放在两个变量中,通过它们计算出dp[i][0]dp[i][1]并存回对应的变量,以便于第i+1天的状态转移即可。

class Solution {public int maxProfit(int[] prices) {int n = prices.length;int dp0 = 0, dp1 = -prices[0];for (int i = 1; i < n; ++i) {int newDp0 = Math.max(dp0, dp1 + prices[i]);int newDp1 = Math.max(dp1, dp0 - prices[i]);dp0 = newDp0;dp1 = newDp1;}return dp0;}
}

时间复杂度: O(n)其中n为数组的长度。一共有2n个状态,每次状态转移的时间复杂度为O(1),因此时间复杂度为O(2n)=O(n)
空间复杂度: O(n)我们需要开辟O(n)空间存储动态规划中的所有状态。如果使用空间优化,空间复杂度可以优化至O(1)

【2】贪心: 由于股票的购买没有限制,因此整个问题等价于寻找x个不相交的区间(li,ri]使得如下的等式最大化∑i=1xa[ri]−a[li]其中li表示在第li天买入,ri表示在第ri天卖出。同时我们注意到对于(li,ri]这一个区间贡献的价值a[ri]−a[li],其实等价于(li,li+1],(li+1,li+2],…,(ri−1,ri]这若干个区间长度为1的区间的价值和,即a[ri]−a[li]=(a[ri]−a[ri−1])+(a[ri−1]−a[ri−2])+…+(a[li+1]−a[li])因此问题可以简化为找x个长度为1的区间(li,li+1]使得∑i=1xa[li+1]−a[li]价值最大化。

贪心的角度考虑我们每次选择贡献大于0的区间即能使得答案最大化,因此最后答案为ans=∑i=1n−1max⁡{0,a[i]−a[i−1]}其中n为数组的长度。需要说明的是,贪心算法只能用于计算最大利润,计算的过程并不是实际的交易过程。

考虑题目中的例子[1,2,3,4,5],数组的长度n=5,由于对所有的1≤i<n1都有a[i]>a[i−1],因此答案为ans=∑i=1n−1a[i]−a[i−1]=4但是实际的交易过程并不是进行4次买入和4次卖出,而是在第1天买入,第5天卖出。

class Solution {public int maxProfit(int[] prices) {int ans = 0;int n = prices.length;for (int i = 1; i < n; ++i) {ans += Math.max(0, prices[i] - prices[i - 1]);}return ans;}
}

时间复杂度: O(n)其中n为数组的长度。我们只需要遍历一次数组即可。
空间复杂度: O(1)只需要常数空间存放若干变量。

http://www.mmbaike.com/news/30776.html

相关文章:

  • 龙岗营销网站建设公司哪家好网站如何快速被百度收录
  • 好的网站设计制作百度指数数据下载
  • 上海市建设安全协会网站j千度搜索引擎
  • 仿苹果手机 网站源码免费聊天软件
  • alexa排名是什么意思seo广告
  • c 做的网站怎么发外链
  • 东营做网站优化的公司百度号注册官网
  • 深圳小程序设计邯郸seo优化
  • 国外搜索网站建设品牌公关
  • wordpress插件制作教程视频西安seo公司哪家好
  • 西安做网站印象网络推广软件赚钱的app
  • 做网站定金是多少快手seo
  • 顺德做pc端网站厦门seo优化
  • 做盘石信用认证网站网络广告策划案例
  • 2018年淘宝客网站怎么做中山网站建设
  • 一开始用php做网站seo入门培训
  • 教你做cpa单页网站百度软件应用中心
  • 电影网站如何优化用网站模板建站
  • 西安建设厅官方网站爱站官网
  • 顺义深圳网站建设公司seo服务公司怎么收费
  • iis php服务器搭建网站百度新闻网
  • 做消费金融网站关键词语有哪些
  • 网站文件保护怎么做百度百科官网
  • 无锡 网站 seo 优化微信朋友圈广告推广
  • 做网站banner课程封面网络营销怎么做
  • 百度怎么做网站广告深圳优化seo
  • 现在还有没有做任务的网站百度seo课程
  • 贝贝网网站开发背景最近大事件新闻
  • 阿里国际网站做免费有用吗重庆seo网站推广费用
  • 网站做京东联盟360seo关键词优化