当前位置: 首页 > news >正文

wordpress做电影网站启动互联全网营销推广

wordpress做电影网站,启动互联全网营销推广,商务网站策划 网站目标与经营模式定位,wordpress企业网站制作视频教程NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关 粒子采集部分 粒子采集的部分我们可以理解为,在已知粒子的情况下,对图片进行渲染的一个正向的过程。 空间坐标(x,y,z)发射的光线通过相机模型成为图片上…

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关

粒子采集部分

粒子采集的部分我们可以理解为,在已知粒子的情况下,对图片进行渲染的一个正向的过程

  • 空间坐标(x,y,z)
  • 发射的光线通过相机模型成为图片上的像素坐标(u,v)
  • 粒子颜色即为像素颜色
  • (u, v)与(x, y, z)的公式如下:也就是之前在相机模型中提到的一些有关坐标转化的部分知识。

在这里插入图片描述

内参+外参来进行的

相反我们的任务是给定一张图片,我们需要的是在许多张图片中推导出相机为位姿信息。

  • 可以看作是沿着某一条射线上的无数个发光点的“和”;
  • 利用相机模型,反推射线
  • 那么这个射线表示为:r(t)=o+td
  • O为射线原点,d为方向,t为距离
  • 极坐标表示

总结来说我们的这个过程就是相机模型的一个反向的过程表达。由像素(u,v)反推出像素的信息来。

在这里插入图片描述

在三维的空间中采样射线的信息。

这一部分就是我们有关的粒子采集的部分信息了。可以得到我们的原点和方向的信息。我们通过这两个信息就可以表示出这条射线了。

体渲染

我们最后得到的像素的颜色是无数个发光粒子在该射线长度上经过累计得到的和。(作为我们像素最终的颜色)。

我们在表示出的这条射线上采用一定的方法取发光粒子的值,最后通过积分就可以得出体渲染所得到的像素的位置坐标了。

r ( t ) = o + t d r(t)=o+td r(t)=o+td

在我们计算的时候这个t是离散化的,我们如何通过选择这个离散的t来进行计算呢?

  1. 方法1:设置near=2,far=6。在near和far之间均匀采样64个点
  • 通过图像和相机的位姿,来计算表示一条射线。
  • 在射线上均匀的采样了64个点
  • 训练时,一张图片取1024个像素,
  • 得到1024条射线,每条射线上采样64个粒子共1024*64个粒子

我们的输出就是粒子的密度和颜色值

对之前的模型的信息进行一定的补充:

γ ( p ) = ( sin ⁡ ( 2 0 π p ) , cos ⁡ ( 2 0 π p ) , … , sin ⁡ ( 2 L − 1 ) , cos ⁡ ( 2 L − 1 π p ) ) \gamma(p)=\left(\sin \left(2^{0} \pi p\right), \cos \left(2^{0} \pi p\right), \ldots, \sin \left(2^{L-1}\right), \cos \left(2^{L-1} \pi p\right)\right) γ(p)=(sin(20πp),cos(20πp),,sin(2L1),cos(2L1πp))

  1. p需要归一化到[-1,1]
  2. 对于空间坐标x,L=10,r(x)是60D
  3. 对于视角坐标d,L= 4,r(d)是24D
  4. 在代码中,加上初始值:r(x)是63D,r(d)是27D

LOSS

  1. GT是图片某一像素的RGB
  2. 将该像素对应光线上的粒子颜色进行求和
  3. 粒子的颜色和:该像素颜色的预测值
  4. 粒子的颜色和]与像素颜色做MSE(均方误差损失)

L = ∑ r ∈ R ∥ C ^ ( r ) − C ( r ) ∥ 2 2 R 是每个batch的射线(1024条)  \begin{array}{l} L=\sum_{r \in R}\|\hat{C}(r)-C(r)\|_{2}^{2}\\ R \text { 是每个batch的射线(1024条) } \end{array} L=rRC^(r)C(r)22R 是每个batch的射线(1024

体渲染连续积分

C ( s ) ^ = ∫ 0 + ∞ T ( s ) σ ( s ) C ( s ) d s T ( s ) = e − ∫ 0 s σ ( t ) d t \begin{array}{l} \hat{C(s)}=\int_{0}^{+\infty} T(s) \sigma(s) C(s) d s \\ T(s)=e^{-\int_{0}^{s} \sigma(t) d t} \end{array} C(s)^=0+T(s)σ(s)C(s)dsT(s)=e0sσ(t)dt

  • T(s):在s点之前,光线没有被阻碍的概率.
  • o(s):在s点处,光线碰击粒子(光线被粒子阻碍)的概率密度
  • C(s):在s点处,粒子光出的颜色
  • 各点的颜色和概率密度已知,要先求T(s)

每个点的体密度与颜色相乘在结合一下不透明度来进行说明。

理论推导部分说明:

在这里插入图片描述

  1. 我们对上面的公式进行推导首先推导T的公式

T ( s + d s ) = T ( s ) [ 1 − σ ( s ) d s ] T ( s + d s ) = T ( s ) − T ( s ) σ ( s ) d s T ( s + d s ) − T ( s ) = − T ( s ) σ ( s ) d s d T ( s ) = − T ( s ) σ ( s ) d s d T ( s ) T ( s ) = − σ ( s ) d s \begin{array}{l} T(s+d s)=T(s)[1-\sigma(s) d s] \\ T(s+d s)=T(s)-T(s) \sigma(s) d s \\ T(s+d s)-T(s)=-T(s) \sigma(s) d s \\ d T(s)=-T(s) \sigma(s) d s \\ \frac{d T(s)}{T(s)}=-\sigma(s) d s \end{array} T(s+ds)=T(s)[1σ(s)ds]T(s+ds)=T(s)T(s)σ(s)dsT(s+ds)T(s)=T(s)σ(s)dsdT(s)=T(s)σ(s)dsT(s)dT(s)=σ(s)ds

两边同时积分就可以得到:

∫ 0 t d T ( s ) T ( s ) = ∫ 0 t − σ ( s ) d s ∫ 0 t 1 T ( s ) d T ( s ) = ∫ 0 t − σ ( s ) d s ln ⁡ T ( s ) ∣ 0 t = ∫ 0 t − σ ( s ) d s ln ⁡ T ( t ) − ln ⁡ T ( 0 ) = ∫ 0 t − σ ( s ) d s ln ⁡ T ( t ) = ∫ 0 t − σ ( s ) d s T ( t ) = e ∫ 0 t − σ ( s ) d s \begin{aligned} \int_{0}^{t} \frac{d T(s)}{T(s)} & =\int_{0}^{t}-\sigma(s) d s \\ \int_{0}^{t} \frac{1}{T(s)} d T(s) & =\int_{0}^{t}-\sigma(s) d s \\ \left.\ln T(s)\right|_{0} ^{t} & =\int_{0}^{t}-\sigma(s) d s \\ \ln T(t)-\ln T(0) & =\int_{0}^{t}-\sigma(s) d s \\ \ln T(t) & =\int_{0}^{t}-\sigma(s) d s \\ T(t) & =e^{\int_{0}^{t}-\sigma(s) d s} \end{aligned} 0tT(s)dT(s)0tT(s)1dT(s)lnT(s)0tlnT(t)lnT(0)lnT(t)T(t)=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=e0tσ(s)ds

因为是离散的数据我们要将之前推导出来的连续形式进行离散化的处理。

  1. 计算机只能处理离散化数据
  2. 将光线[O,s]划分为N个等间距区间[Tn→ Tn+1]
  3. n=0,1,2,…,N
  4. 间隔长度为on

C ^ ( r ) = ∑ i = 1 N T i ( 1 − e − σ i δ i ) c i where  T i = e − ∑ j = 1 i − 1 σ j δ j \begin{array}{l} \hat{C}(r)=\sum_{i=1}^{N} T_{i}\left(1-e^{-\sigma_{i} \delta_{i}}\right) c_{i}\\ \text { where } T_{i}=e^{-\sum_{j=1}^{i-1} \sigma_{j} \delta_{j}} \end{array} C^(r)=i=1NTi(1eσiδi)ci where Ti=ej=1i1σjδj

下面我们补充我们的离散化公式的一个推导过程。

我们对每个光区贡献的光强进行累计操作。

C ^ = ∑ n = 0 N I ( T n → T n + 1 ) \hat{C}=\sum_{n=0}^{N} I\left(T_{n} \rightarrow T_{n+1}\right) C^=n=0NI(TnTn+1)

I ( T n → T n + 1 ) = ∫ t n t n + 1 T ( t ) σ n C n d t = σ n C n ∫ t n t n + 1 T ( t ) d t = σ n C n ∫ t n t n + 1 e − ∫ 0 t σ ( s ) d s d t = σ n C n ∫ t n t n + 1 e − ( ∫ 0 t n σ ( s ) d s + ∫ t n t σ ( s ) d s ) d t = σ n C n ∫ t n t n + 1 e − ∫ 0 t n σ ( s ) d s e − ∫ t n t σ ( s ) d s d t = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − ∫ t n t σ ( s ) d s d t \begin{aligned} I\left(T_{n} \rightarrow T_{n+1}\right) & =\int_{t_{n}}^{t_{n+1}} T(t) \sigma_{n} C_{n} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} T(t) d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\int_{0}^{t} \sigma(s) d s} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\left(\int_{0}^{t_{n}} \sigma(s) d s+\int_{t_{n}}^{t} \sigma(s) d s\right)} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\int_{0}^{t_{n}} \sigma(s) d s} e^{-\int_{t_{n}}^{t} \sigma(s) d s} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\int_{t_{n}}^{t} \sigma(s) d s} d t \end{aligned} I(TnTn+1)=tntn+1T(t)σnCndt=σnCntntn+1T(t)dt=σnCntntn+1e0tσ(s)dsdt=σnCntntn+1e(0tnσ(s)ds+tntσ(s)ds)dt=σnCntntn+1e0tnσ(s)dsetntσ(s)dsdt=σnCnT(0tn)tntn+1etntσ(s)dsdt

经过化简就可以得到最后的公式的形式:

I ( T n → T n + 1 ) = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − ∫ t n t σ n d s d t = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − σ n ( t − t n ) d t = σ n C n T ( 0 → t n ) [ − 1 σ n e − σ n ( t − t n ) ∣ t n t n + 1 ] = C n T ( 0 → t n ) ( 1 − e σ n δ n ) = C n e − ∑ i = 0 n − 1 σ i δ i ( 1 − e σ n δ n ) . \begin{aligned} I\left(T_{n} \rightarrow T_{n+1}\right) & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\int_{t_{n}}^{t} \sigma_{n} d s} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\sigma_{n}\left(t-t_{n}\right)} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right)\left[-\left.\frac{1}{\sigma_{n}} e^{-\sigma_{n}\left(t-t_{n}\right)}\right|_{t_{n}} ^{t_{n+1}}\right] \\ & =C_{n} T\left(0 \rightarrow t_{n}\right)\left(1-e^{\sigma_{n} \delta_{n}}\right) \\ & =C_{n} e^{-\sum_{i=0}^{n-1} \sigma_{i} \delta_{i}}\left(1-e^{\sigma_{n} \delta_{n}}\right). \end{aligned} I(TnTn+1)=σnCnT(0tn)tntn+1etntσndsdt=σnCnT(0tn)tntn+1eσn(ttn)dt=σnCnT(0tn)[σn1eσn(ttn) tntn+1]=CnT(0tn)(1eσnδn)=Cnei=0n1σiδi(1eσnδn).

  • 粗模型:输入均匀采样粒子,输出密度
  • 细模型:根据密度,二次采样
  • 最后输出:采用模型2的输出
  • 粗模型和细模型结构相同
http://www.mmbaike.com/news/31221.html

相关文章:

  • 外贸网站建设内容包括营销网站案例
  • wordpress wpqueryseo关键词优化的技巧
  • 潍坊建站模板搭建短视频营销推广方式
  • 做哪些网站不受法律保护网络营销和传统营销有什么区别
  • 镇江建设工程质量监督局网站网络推广都是收费
  • 贵州省赤水市代码武汉seo价格
  • 全网展示型网站建设汕头网站建设优化
  • 重庆网站建设流程太原seo顾问
  • 动态网站建设期末考试企业网站模板下载
  • 网站建设委托开发合同seo关键词优化如何
  • lnmp 网站开发总结百度竞价推广一个月多少钱
  • 做网页的网站国际新闻今日头条
  • wordpress+编辑器+空格搜索引擎优化网站的网址
  • 通州 网站建设关键词资源
  • 利用手机搭建网站今日小说排行榜百度搜索榜
  • 网站编辑超链接怎么做酒店营销推广方案
  • 一张图片做单页网站郑州seo优化阿亮
  • 网站建设亮点广东网络seo推广公司
  • 建程网会员硬件优化大师下载
  • 建材网站建设徐州seo排名公司
  • cdr做网站流程巩义网络推广外包
  • 如何建立网站服务器网络测试
  • 如何注销网站备案南京广告宣传公司seo
  • 郑州企业网站排名优化班级优化大师使用心得
  • 软件项目管理流程神马seo服务
  • 租赁合同模板廊坊百度提升优化
  • 福州cms模板建站免费精准客源
  • 网站内页百度提交口百度客服在线咨询人工服务
  • icp备案网站接入信息ip地址段企业网络搭建
  • 北京 手机网站建设江苏seo排名