当前位置: 首页 > news >正文

网站空间与服务器的区别网上营销怎么做

网站空间与服务器的区别,网上营销怎么做,个人做网站赚钱么,成都 网站建设 公司深度强化学习介绍、概念 强化学习介绍离散场景,使用行为价值方法连续场景,使用概率分布方法实时反馈连续场景:使用概率分布 行为价值方法 强化学习六要素设计奖励函数设计评论家策略学习与优化 算法路径深度 Q 网络 DQN演员-评论家算法&…

深度强化学习介绍、概念

    • 强化学习介绍
      • 离散场景,使用行为价值方法
      • 连续场景,使用概率分布方法
      • 实时反馈连续场景:使用概率分布 + 行为价值方法
    • 强化学习六要素
      • 设计奖励函数
      • 设计评论家
      • 策略学习与优化
    • 算法路径
      • 深度 Q 网络 DQN
      • 演员-评论家算法:多智能体强化学习核心框架
      • PPO 近端策略优化算法

强化学习介绍

机器学习是把带标签的数据训练模型,使得预测值尽可能接近真实值。

强化学习是通过和环境交互,奖励来训练模型,使得最后获取的奖励最大期望值。

在强化学习中,机器基于环境做出行为,正确的行为能够获得奖励。

以获得更多奖励为目标,实现机器与环境的最优互动。

如教狗子握手的时候,如果狗子正确握手,就能得到骨头奖励,不握手就没有。

如果咬了主人一口,还会受到惩罚。

长此以往,狗子为了得到更多骨头,就能学会握手这个技能。

强化学习和机器学习最大不同在于,环境未知。

因为环境未知,所以我们不能通过大量数据得到决策。

只能通过和环境的交互中,不断改进策略。

强化学习的发展历史:

  • 动态规划:学过数据结构与算法的人,都了解,是传统算法策略中最难的,千变万化。
  • 表格方法:时序差分、Q-Learning 、SARSA
  • 函数逼近:线性函数逼近、多项式函数逼近、基函数逼近
  • 深度强化学习:DQN、DDPG、AlphaStar、A2C、A3C、PPO

强化学习可分为离散、连续场景。

离散场景,使用行为价值方法

离散场景:机器行为的有限的,如动作类游戏。只有向上、向下、向左、向右这 4 个动作,移动也只能一格一格地走。

可以把每个状态下的所有行为列举出来,用评论家为每个行为打分,通过选择最高分的行为实现最优互动。

因为需要评估每个行为的价值,所以这种学习方法被称为基于行为价值的方法。

基于值的方法需要根据每个行为的价值进行打分,选出价值最高的行为。

由于要穷举出所有行为,因此它只适用于离散场景(动作类游戏),无法应对连续场景。

Q-Learning 和 DQN 算法,都属于基于值的强化学习方法。

优势在于,基于行为价值的方法能实时反馈。

可以根据每个行为的价值进行打分,这个分数就相当于每个行为的实时反馈。

连续场景,使用概率分布方法

连续场景:机器的行为是连贯的,如赛车的方向盘转动角度可以在一定区间内任意取值,角度之间可以无限分割。

还有基于行为概率的方法,无需根据每个行为的价值来打分,可以很好地胜任连续场景。

基于行为概率策略的方法并不需要考虑行为的价值,而是反应调整。

机器会在训练过程中随机抽取一些行为,与环境互动。如果行为获得了奖励,就会提高选择它的概率。以后遇到同样的状态时,有更高的概率再次做出这个行为。

相反,如果未获得奖励,或者受到了惩罚,就保持或者降低该行为的概率。

经过大量训练,最终会得出连续行为的概率分布。

基于这样的原理,一个行为能获得越多奖励,被选择的概率就越大,从而实现机器和环境的最优化互动。

PPO、演员-评论家 就是能处理连续场景的算法。

优势在于,基于策略的方法能应用连续场景上。但不能实时反馈。

实时反馈连续场景:使用概率分布 + 行为价值方法

机器在与环境互动时,难以得到实时反馈,往往要在整个回合结束后才能获得奖励。

如赢一盘棋是正向奖励,输一盘棋是负面奖励,但棋局中某一颗棋子的价值很难即时评估。

想要提高学习效率,就必须想办法提供实时反馈。

有没有办法可以在应对连续场景上的优点,和离散场景在实时反馈上的优点结合呢?

比如演员-评论家算法。

这个算法分成两半,一半是演员,另一半是评论家。

  • 演员:这一半基于概率分布,策略梯度算法。它有一个神经网络,可以根据行为的概率,选出行为。

  • 评论家:这一半基于行为价值,DQN 算法。它有一个神经网络,可以根据行为的价值进行打分。

将概率分布和行为价值的方法相结合:

  • 由基于概率分布的策略网络在连续场景中选出行为
  • 由基于行为价值的价值网络给行为提供实时反馈

概率分布网络就像写作业的学生,行为价值网络就像批改作业的老师。

二者结合,反复地写作业、改作业,对比方法,找出最好的方法。

 


强化学习六要素

强化学习六要素:环境、策略、状态、行为、奖励、评论家。

如在对弈的环境中,策略根据棋盘上的状态,做出落子行为,每盘棋的胜负获得奖励

模拟足够多棋局后,评论家就可以通过计算预测出每步棋对整盘棋的价值,为其打分。

在强化学习中,容易混淆的概念有:状态奖励函数、状态价值函数、动作奖励函数、动作价值函数。

设计奖励函数

奖励函数直接与环境相连,为算法提供即时的反馈。

奖励函数有两种类型:

  • 状态奖励函数:为智能体到达或处于特定状态时提供的即时奖励。如走迷宫,到达出口可能立即给予正奖励。

  • 动作奖励函数:为执行特定动作而提供的即时奖励。如下棋,吃掉对方的重要棋子可能立即获得奖励。

设计评论家

评论家(或价值函数)在强化学习中用于评估和指导策略的长期效益,基于累积奖励的概念。

  • 状态价值函数(V):评估处于某一特定状态的长期价值。这涉及对从该状态开始,未来可能获得的所有奖励的估计。
  • 动作价值函数(Q):评估在特定状态下执行特定动作的长期价值。这不仅包括即时奖励,还包括因该动作产生的后续状态和未来可能的奖励。

状态奖励函数、状态价值函数关注到达某状态的价值 - 前者是当下回报、后者是长期回报。

动作奖励函数、动作价值函数关注执行某动作的价值 - 前者是当下回报、后者是长期回报。

奖励函数提供即时反馈,价值函数预估长期收益。

策略学习与优化

通过与环境的交互,不断更新策略和价值函数来改进决策。

  • 学习:根据奖励和评论家的反馈,调整策略和价值函数。
  • 探索与利用:平衡 是尝试新动作(探索更好的动作)还是 利用已知的好动作(利用已知最好)。

算法路径

深度 Q 网络 DQN

记录于 — 【OpenAI Q* 超越人类的自主系统】DQN :Q-Learning + 深度神经网络

演员-评论家算法:多智能体强化学习核心框架

记录于 — 演员-评论家算法:多智能体强化学习核心框架

PPO 近端策略优化算法

记录于 —【ChatGPT 默认强化学习策略】PPO 近端策略优化算法

 


http://www.mmbaike.com/news/31814.html

相关文章:

  • 做设计学什么英语比较好的网站静态网页设计与制作
  • 青龙建站教程自学网软件推广赚钱
  • 做软件常用的网站有哪些行者seo
  • 做旅游网站的需求分析报告最新seo自动优化软件
  • 深圳如何做网站个人博客网站模板
  • 如何手机网站建立seo自学网官网
  • 网站建设高考题品牌营销案例
  • 智慧团建网站登录操作搜索关键词排名工具
  • c 网站开发案例源码关键词优化流程
  • 网站 做购物车汕头seo
  • 怎样申请网站空间关键词推广优化排名如何
  • 找模板seo长沙
  • 360免费六年级上册数学优化设计答案
  • dw做网站字体做多大网站设计报价方案
  • 这么做国外网站的国内镜像站深圳电子网络推广查询
  • 黑龙江省建设厅武汉网站设计十年乐云seo
  • 手机网站设计规范吸引顾客的营销策略
  • 织梦如何做中英文网站百度收录怎么查询
  • 网站需要的栏目宁德市政府
  • wordpress代码运行插件seo竞价
  • 长沙 做营销型网站的公司2022年适合小学生的新闻
  • 龙游手机网站制作宁波seo推广咨询
  • php网站开发ppt产品推广策略怎么写
  • 企业网站需求方案百度软件中心官网
  • 国外优秀vi设计网站seo优化厂商
  • 做网站和游戏是如何赚钱免费发链接的网站
  • 深圳网站建设费用网站制作 网站建设
  • 做企业网站选百度云还是阿里云百度快速排名工具
  • 海口网页建站模板百度电话客服24小时人工
  • 网站平台需要做无形资产吗 怎么做结构优化设计