当前位置: 首页 > news >正文

手机营销推广方案如何推广seo

手机营销推广方案,如何推广seo,服装网站建设公司推荐,用vb做网站导航栏Flink系列之:窗口Top-N 一、窗口Top-N二、示例:在窗口聚合后进行窗口 Top-N三、在窗口表值函数后进行窗口 Top-N四、限制 一、窗口Top-N 适用于流、批一体窗口 Top-N 是特殊的 Top-N,它返回每个分区键的每个窗口的N个最小或最大值。与普通To…

Flink系列之:窗口Top-N

  • 一、窗口Top-N
  • 二、示例:在窗口聚合后进行窗口 Top-N
  • 三、在窗口表值函数后进行窗口 Top-N
  • 四、限制

一、窗口Top-N

  • 适用于流、批一体
  • 窗口 Top-N 是特殊的 Top-N,它返回每个分区键的每个窗口的N个最小或最大值。
  • 与普通Top-N不同,窗口Top-N只在窗口最后返回汇总的Top-N数据,不会产生中间结果。窗口 Top-N 会在窗口结束后清除不需要的中间状态。 因此,窗口 Top-N 适用于用户不需要每条数据都更新Top-N结果的场景,相对普通Top-N来说性能更好。通常,窗口 Top-N 直接用于 窗口表值函数上。 另外,窗口 Top-N 可以用于基于 窗口表值函数 的操作之上,比如 窗口聚合,窗口 Top-N 和 窗口关联。
  • 窗口 Top-N 的语法和普通的 Top-N 相同。除此之外,窗口 Top-N 需要 PARTITION BY 子句包含 窗口表值函数 或 窗口聚合 产生的 window_start 和 window_end。 否则优化器无法翻译。

下面展示了窗口 Top-N 的语法:

SELECT [column_list]
FROM (SELECT [column_list],ROW_NUMBER() OVER (PARTITION BY window_start, window_end [, col_key1...]ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownumFROM table_name) -- relation applied windowing TVF
WHERE rownum <= N [AND conditions]

二、示例:在窗口聚合后进行窗口 Top-N

下面的示例展示了在10分钟的滚动窗口上计算销售额位列前三的供应商。

-- tables must have time attribute, e.g. `bidtime` in this table
Flink SQL> desc Bid;
+-------------+------------------------+------+-----+--------+---------------------------------+
|        name |                   type | null | key | extras |                       watermark |
+-------------+------------------------+------+-----+--------+---------------------------------+
|     bidtime | TIMESTAMP(3) *ROWTIME* | true |     |        | `bidtime` - INTERVAL '1' SECOND |
|       price |         DECIMAL(10, 2) | true |     |        |                                 |
|        item |                 STRING | true |     |        |                                 |
| supplier_id |                 STRING | true |     |        |                                 |
+-------------+------------------------+------+-----+--------+---------------------------------+Flink SQL> SELECT * FROM Bid;
+------------------+-------+------+-------------+
|          bidtime | price | item | supplier_id |
+------------------+-------+------+-------------+
| 2020-04-15 08:05 |  4.00 |    A |   supplier1 |
| 2020-04-15 08:06 |  4.00 |    C |   supplier2 |
| 2020-04-15 08:07 |  2.00 |    G |   supplier1 |
| 2020-04-15 08:08 |  2.00 |    B |   supplier3 |
| 2020-04-15 08:09 |  5.00 |    D |   supplier4 |
| 2020-04-15 08:11 |  2.00 |    B |   supplier3 |
| 2020-04-15 08:13 |  1.00 |    E |   supplier1 |
| 2020-04-15 08:15 |  3.00 |    H |   supplier2 |
| 2020-04-15 08:17 |  6.00 |    F |   supplier5 |
+------------------+-------+------+-------------+Flink SQL> SELECT *FROM (SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY price DESC) as rownumFROM (SELECT window_start, window_end, supplier_id, SUM(price) as price, COUNT(*) as cntFROM TABLE(TUMBLE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES))GROUP BY window_start, window_end, supplier_id)) WHERE rownum <= 3;
+------------------+------------------+-------------+-------+-----+--------+
|     window_start |       window_end | supplier_id | price | cnt | rownum |
+------------------+------------------+-------------+-------+-----+--------+
| 2020-04-15 08:00 | 2020-04-15 08:10 |   supplier1 |  6.00 |   2 |      1 |
| 2020-04-15 08:00 | 2020-04-15 08:10 |   supplier4 |  5.00 |   1 |      2 |
| 2020-04-15 08:00 | 2020-04-15 08:10 |   supplier2 |  4.00 |   1 |      3 |
| 2020-04-15 08:10 | 2020-04-15 08:20 |   supplier5 |  6.00 |   1 |      1 |
| 2020-04-15 08:10 | 2020-04-15 08:20 |   supplier2 |  3.00 |   1 |      2 |
| 2020-04-15 08:10 | 2020-04-15 08:20 |   supplier3 |  2.00 |   1 |      3 |
+------------------+------------------+-------------+-------+-----+--------+

注意: 为了更好地理解窗口行为,这里把 timestamp 值后面的0去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3) ,2020-04-15 08:05 应该显示成 2020-04-15 08:05:00.000 。

这条Flink SQL查询的目标是在表Bid中根据时间窗口对数据进行分组,并找出每个窗口内价格最高的三个供应商。

  • 首先,在FROM子句中,使用TUMBLE函数对Bid表进行分区,每个分区的时间窗口大小为10分钟,并指定bidtime作为分区依据。然后,将其结果作为内部查询的输入表。
  • 在内部查询中,使用GROUP BY子句将数据按窗口的开始时间(window_start)、结束时间(window_end)和供应商ID(supplier_id)进行分组。并计算每个分组的价格总和(SUM(price))和行数(COUNT(*))。同时,使用ROW_NUMBER()函数在每个窗口分组内按价格降序排列,并为每行分配一个行号(rownum)。
  • 最后,在外部查询中,筛选出行号(rownum)小于等于3的记录,并返回窗口的开始时间、结束时间、供应商ID、价格总和、行数和行号。
  • 最终的查询结果将包括每个窗口内价格最高的三个供应商的信息。

三、在窗口表值函数后进行窗口 Top-N

下面的示例展示了在10分钟的滚动窗口上计算价格位列前三的数据。

Flink SQL> SELECT *FROM (SELECT *, ROW_NUMBER() OVER (PARTITION BY window_start, window_end ORDER BY price DESC) as rownumFROM TABLE(TUMBLE(TABLE Bid, DESCRIPTOR(bidtime), INTERVAL '10' MINUTES))) WHERE rownum <= 3;
+------------------+-------+------+-------------+------------------+------------------+--------+
|          bidtime | price | item | supplier_id |     window_start |       window_end | rownum |
+------------------+-------+------+-------------+------------------+------------------+--------+
| 2020-04-15 08:05 |  4.00 |    A |   supplier1 | 2020-04-15 08:00 | 2020-04-15 08:10 |      2 |
| 2020-04-15 08:06 |  4.00 |    C |   supplier2 | 2020-04-15 08:00 | 2020-04-15 08:10 |      3 |
| 2020-04-15 08:09 |  5.00 |    D |   supplier4 | 2020-04-15 08:00 | 2020-04-15 08:10 |      1 |
| 2020-04-15 08:11 |  2.00 |    B |   supplier3 | 2020-04-15 08:10 | 2020-04-15 08:20 |      3 |
| 2020-04-15 08:15 |  3.00 |    H |   supplier2 | 2020-04-15 08:10 | 2020-04-15 08:20 |      2 |
| 2020-04-15 08:17 |  6.00 |    F |   supplier5 | 2020-04-15 08:10 | 2020-04-15 08:20 |      1 |
+------------------+-------+------+-------------+------------------+------------------+--------+

注意: 为了更好地理解窗口行为,这里把 timestamp 值后面的0去掉了。例如:在 Flink SQL Client 中,如果类型是 TIMESTAMP(3) ,2020-04-15 08:05 应该显示成 2020-04-15 08:05:00.000 。

这个Flink SQL语句的目标是从表Bid中选择特定的列,并为每个时间窗口内的数据分配一个行号(rownum)。行号的分配是基于每个窗口内数据的价格进行降序排列。

  • 首先,在内部查询中,使用TUMBLE函数将Bid表按照bidtime进行分区,每个分区代表一个时间窗口,窗口大小为10分钟。然后将分区结果作为输入表。
  • 接下来,在内部查询中,使用ROW_NUMBER()函数为每个窗口分组内的数据分配行号。PARTITION BY子句指定按窗口开始时间(window_start)和结束时间(window_end)进行分组,ORDER BY子句指定按价格(price)降序排列。这样,每个时间窗口内的数据就会被分配一个行号。
  • 最后,在外部查询中,筛选出行号(rownum)小于等于3的记录,这意味着只保留每个时间窗口内前三个价格最高的数据。
  • 最终的查询结果将包括原始表中的所有列,以及每个时间窗口的开始时间、结束时间和行号。这样就可以查看每个窗口内价格最高的前三个数据,同时保留其他列的信息。

四、限制

  • 目前,Flink只支持在滚动,滑动和累计 窗口表值函数后进行窗口 Top-N。基于会话窗口的Top-N将在将来版本中支持。
http://www.mmbaike.com/news/32944.html

相关文章:

  • 网站建设哪里公司好百度联盟点击广告赚钱
  • 做网站需要自备服务器吗网络销售话术900句
  • 网页源代码在线查看seo门户
  • 武汉做网站的价格成都谷歌seo
  • 备案的域名拿来做别的网站贵港网站seo
  • 网页版传奇复古谷歌seo站内优化
  • 如何进行企业营销型网站建设规划搜索引擎营销推广
  • 网投网站怎么做福州短视频seo推荐
  • 计算机网站建设与开发阳东网站seo
  • 贵阳能做网站的公司有哪些安卓优化大师2021
  • 成都市建设网站公司人民日报今日头条新闻
  • 经典企业网站欣赏网络舆情报告
  • 娄底做网站最近三天的新闻大事
  • 做平面哪个网站的素材最好上海比较好的seo公司
  • 山西省建设厅网站官网推广方案策划
  • 泉州学校网站开发包括哪些内容
  • 导航网站怎么赚钱营销团队找产品合作
  • wordpress 即时通讯关键词优化公司哪家效果好
  • wordpress文章列分页seo公司排名教程
  • 一级a做爰片免费网站体验区老鬼seo
  • b2c的网站seo排名优化教程
  • 免费聊天网站模板和源码百度推广代运营
  • 建设谷歌公司网站费用各大网站推广平台
  • 网站的外链建设计划qq推广官网
  • 武汉网址建站杭州seook优屏网络
  • 阿里云服务器发布网站北京seo学校
  • wordpress 网站播放器企业管理培训免费课程
  • 天河wap网站建设公司培训课程表
  • 网站开发vs2013网页设计需要学什么软件
  • wordpress拼音tag插件优化网络培训