当前位置: 首页 > news >正文

网站建设意义模板北京营销公司比较好的

网站建设意义模板,北京营销公司比较好的,大连网站网页设计公司,推广的方式集合卡尔曼滤波(Ensemble Kalman Filter) 文章目录 引言理论基础卡尔曼滤波集合卡尔曼滤波初始化预测步骤更新步骤卡尔曼增益更新集合 MATLAB 实现运行结果3. 应用领域结论 引言 集合卡尔曼滤波(Ensemble Kalman Filter, EnKF)是…

在这里插入图片描述

集合卡尔曼滤波(Ensemble Kalman Filter)

文章目录

  • 引言
  • 理论基础
    • 卡尔曼滤波
    • 集合卡尔曼滤波
      • 初始化
      • 预测步骤
      • 更新步骤
      • 卡尔曼增益
      • 更新集合
  • MATLAB 实现
  • 运行结果
  • 3. 应用领域
  • 结论

引言

集合卡尔曼滤波(Ensemble Kalman Filter, EnKF)是一种基于状态估计的非线性滤波方法,广泛应用于动态系统中的状态估计和数据同化问题。它通过使用一组样本(即“集合”)来近似状态的概率分布,有效地处理高维和非线性系统。

理论基础

卡尔曼滤波

卡尔曼滤波是一种递归算法,用于估计线性动态系统的状态。其基本模型可以描述为:

  • 状态方程:
    x k = A x k − 1 + B u k + w k x_k = Ax_{k-1} + Bu_k + w_k xk=Axk1+Buk+wk
    其中, x k x_k xk 是当前状态, A A A 是状态转移矩阵, B B B 是控制输入矩阵, u k u_k uk 是控制输入, w k w_k wk 是过程噪声,通常假设为高斯分布。

  • 测量方程:
    z k = H x k + v k z_k = Hx_k + v_k zk=Hxk+vk
    其中, z k z_k zk 是测量值, H H H 是测量矩阵, v k v_k vk 是测量噪声,通常也假设为高斯分布。

集合卡尔曼滤波

当系统是非线性时,传统卡尔曼滤波的假设可能不再成立,因此需要引入集合卡尔曼滤波。EnKF的基本思想是使用一组状态样本来表示状态分布。具体步骤如下:

初始化

生成初始状态的集合:
X 0 = { x 0 1 , x 0 2 , … , x 0 N } X_0 = \{x_0^1, x_0^2, \ldots, x_0^{N}\} X0={x01,x02,,x0N}
其中, N N N 是集合的大小。通常,样本是从初始状态的概率分布中采样。

预测步骤

根据状态方程更新每个样本:
x k i = A x k − 1 i + B u k + w k i ( i = 1 , 2 , … , N ) x_k^i = A x_{k-1}^i + B u_k + w_k^i \quad (i = 1, 2, \ldots, N) xki=Axk1i+Buk+wki(i=1,2,,N)
其中, w k i w_k^i wki 是从过程噪声分布中采样的噪声。

更新步骤

计算样本的均值和协方差:

  • 均值:
    x ˉ k = 1 N ∑ i = 1 N x k i \bar{x}_k = \frac{1}{N} \sum_{i=1}^{N} x_k^i xˉk=N1i=1Nxki

  • 协方差:
    P k = 1 N − 1 ∑ i = 1 N ( x k i − x ˉ k ) ( x k i − x ˉ k ) T P_k = \frac{1}{N-1} \sum_{i=1}^{N} (x_k^i - \bar{x}_k)(x_k^i - \bar{x}_k)^T Pk=N11i=1N(xkixˉk)(xkixˉk)T

根据测量方程计算创新和创新协方差:

  • 创新:
    y k = z k − H x ˉ k y_k = z_k - H \bar{x}_k yk=zkHxˉk

  • 创新协方差:
    S k = H P k H T + R S_k = H P_k H^T + R Sk=HPkHT+R
    其中, R R R 是测量噪声的协方差。

卡尔曼增益

计算卡尔曼增益:
K k = P k H T S k − 1 K_k = P_k H^T S_k^{-1} Kk=PkHTSk1

更新集合

最后,更新每个样本:
x k i = x k i + K k y k ( i = 1 , 2 , … , N ) x_k^i = x_k^i + K_k y_k \quad (i = 1, 2, \ldots, N) xki=xki+Kkyk(i=1,2,,N)

MATLAB 实现

以下是基于上述理论的 MATLAB 代码示例,用于实现集合卡尔曼滤波:

% 集合卡尔曼滤波示例
% 2024-11-12/Ver1
clear; clc; close all; % 清除工作空间,清空命令窗口,关闭所有图形窗口
rng(0); % 设置随机数生成器的种子,以确保结果可重复% 参数设置
n = 4; % 状态维度(4个状态变量)
m = 2; % 测量维度(2个测量变量)
N = 100; % 时间步数(总共进行100个时间步的模拟)
num_ensemble = 10; % 集合成员数量(使用10个样本进行估计)
process_noise_cov = 1e-5 * eye(n); % 过程噪声协方差矩阵(小值,表示低噪声)
measurement_noise_cov = 1 * eye(m); % 测量噪声协方差矩阵(较大值,表示较高噪声)% 初始化真实状态
true_state = zeros(n, N); % 创建一个n行N列的零矩阵,用于存储真实状态
true_state(:, 1) = [1; 0; 2; 1]; % 设置初始真实状态(X位移、X速度、Y位移、Y速度)T = 1; %时间间隔
% 状态转移矩阵
A = [1 T 0 0;  % 状态转移矩阵,定义如何从一个状态转移到下一个状态0 1 0 0; 0 0 1 T; 0 0 0 1];% 测量矩阵
H = [1 0 0 0; % 测量矩阵,定义如何从状态生成测量值0 0 1 0];

完整代码下载链接:https://download.csdn.net/download/callmeup/89986951

运行结果

轨迹图:
在这里插入图片描述
状态曲线:
在这里插入图片描述
误差曲线:
在这里插入图片描述

误差统计特性输出:
在这里插入图片描述

3. 应用领域

集合卡尔曼滤波在多个领域中得到了广泛应用,包括:

  • 气象学:在天气预报和气候模型中进行数据同化。
  • 环境科学:用于水文模型、污染扩散模型等。
  • 机器人:在定位和导航中进行状态估计。
  • 金融:用于时间序列数据的预测与分析。

结论

集合卡尔曼滤波是一种强大的工具,能够在复杂的非线性和高维状态空间中实现有效的状态估计。通过使用集合样本来近似状态分布,EnKF克服了传统卡尔曼滤波在处理非线性问题时的局限性,具有良好的计算效率和灵活性。随着数据同化和状态估计需求的增加,EnKF的应用前景将更加广泛。

如有需要,可私信或通过下方的卡片联系我

http://www.mmbaike.com/news/36779.html

相关文章:

  • wordpress使用json天津关键词优化网站
  • 网站花瓣飘落的效果怎么做域名解析查询站长工具
  • 住房和城乡建设部令第51号seo销售代表招聘
  • dw如何在网站做弹窗小网站搜什么关键词
  • 开发网站公司价格如何搜索网页关键词
  • 县局网站建设招标电子商务网站建设与管理
  • 织梦模板怎么单独做移动端网站河南省网站
  • 集团网站建设新闻推广公司app主要做什么
  • 网站网络推广淘宝站内推广方式有哪些
  • 如何把网站推广出去百度app免费下载
  • 做网页去哪些网站找素材较好灰色推广
  • 电商网站建设电话网络app推广是什么工作
  • 深圳做网站的公司搜行者seo广告传媒公司
  • 汽车之家网站是怎么做的短视频广告投放平台
  • 销售一个产品的网站怎么做关于网站推广
  • 江阴青阳道路建设网站百度投诉中心电话
  • 国内有哪些比较好的做定制旅游网站电子商务推广方式
  • 有哪些可以做h5的网站seo高手培训
  • 淘宝客不建立网站怎么做淘宝指数查询官网
  • 网站中的横幅怎么做企业培训有哪些方面
  • 广东律师事务所东莞网站建设站长之家产品介绍
  • 网站中怎么做图片的变换线上广告接单平台
  • 工控网做网站维护吗最新app推广
  • 小学生做网站步骤seo搜索是什么
  • 前端开发转行做什么好深圳知名seo公司
  • 做ppt的网站 知乎google排名
  • 湖北企业网站建设公司百度seo营销公司
  • 哪个网站做的ppt模板好无锡百度
  • 建立内部网站需要多少钱泰州网站优化公司
  • 工信部网站icp备案代办百度推广代理商加盟