当前位置: 首页 > news >正文

网页游戏广告平台网站建设seo外链购买

网页游戏广告平台网站建设,seo外链购买,国务院建设行政网站,半厘米wordpress目录 ChatGPT辅助细化知识增强!一、研究背景二、模型结构和代码任务流程一:启发式生成 三、数据集介绍三、性能展示实现过程运行过程训练过程 ChatGPT辅助细化知识增强! 多模态命名实体识别(MNER)最近引起了广泛关注。…

目录

  • ChatGPT辅助细化知识增强!
  • 一、研究背景
  • 二、模型结构和代码
      • 任务流程
      • 一:启发式生成
  • 三、数据集介绍
  • 三、性能展示
  • 实现过程
  • 运行过程
      • 训练过程

在这里插入图片描述

ChatGPT辅助细化知识增强!

在这里插入图片描述
多模态命名实体识别(MNER)最近引起了广泛关注。 用户在社交媒体上生成大量非结构化内容,主要由图像和文本组成。这些帖子具有与社交媒体相关的固有特征,包括简洁和非正式的写作风格。 这些独特的特征对传统的命名实体识别(NER)方法提出了挑战。

一、研究背景

社交媒体上的多模态命名实体识别(MNER)旨在通过结合基于图像的线索来增强文本实体预测。 现有的研究主要集中在最大限度地利用相关图像信息或结合显式知识库中的外部知识。

二、模型结构和代码

我的模型主要分为两个阶段。在生成辅助细化知识的阶段,我利用一组有限的预定义人工样本,并采用多模态相似示例感知模块来仔细选择相关实例。然后,将这些选定的示例合并到格式正确的提示中,从而增强为 ChatGPT 提供的启发式指导,以获取精炼的知识。

任务流程

  1. 任务公式化
    在这里插入图片描述

  2. 上下文学习
    在这里插入图片描述
    虽然GPT-4可以接受多模态信息输入,但这一功能仅处于内部测试阶段,尚未公开使用。此外,与ChatGPT相比,GPT-4的成本更高,API请求速度较慢。为了提高可复现性,我们仍然选择ChatGPT作为主要的研究对象,并且提供的这一范式也可以用于GPT-4。

为了使ChatGPT能够完成图文多模态任务,使用了先进的多模态预训练模型将图像转换为图像说明。最后将测试输入x设计为以下模板:
在这里插入图片描述

一:启发式生成

  1. 预定义的人工样本
    使ChatGPT在MNER任务中表现更好的关键在于选择合适的上下文示例。获取准确标注的上下文示例,这些示例能够精确反映数据集的标注风格并提供扩展辅助知识的途径,是一个显著的挑战。直接从原始数据集中获取这些示例并不可行。为了解决这个问题,我采用了随机抽样的方法,从训练集中选择一小部分样本进行人工标注。具体来说,对于Twitter-2017数据集,从训练集中随机抽取200个样本进行人工标注,而对于Twitter-2015数据集,数量为120。标注过程包括两个主要部分。第一部分是识别句子中的命名实体,第二部分是综合考虑图像和文本内容以及相关知识,提供全面的理由说明。在标注过程中遇到的多种情况中,标注者需要从人类的角度正确判断并解释样本。对于图像和文本相关的样本,我们直接说明图像中强调了文本中的哪些实体。对于图像和文本无关的样本,我们直接声明图像描述与文本无关。通过人工标注过程,强调了句子中的实体及其对应的类别。此外,引入了相关的辅助知识来支持这些判断。这个细致的标注过程为ChatGPT提供了指导,使其能够生成高度相关且有价值的回答。

  2. 多模态相似示例感知模块
    由于GPT的少样本学习能力在很大程度上取决于上下文示例的选择,我设计了多模态相似示例感知(MSEA)模块来选择合适的上下文示例。作为一个经典的多模态任务,MNER的预测依赖于文本和视觉信息的整合。因此,我们将文本和图像的融合特征作为评估相似示例的基本标准。而这种多模态融合特征可以从之前的多模态命名实体识别(MNER)模型中获得。将MNER数据集D和预定义的人工样本
    G

在这里插入图片描述

在以往的研究中,经过交叉注意力投射到高维潜在空间的融合特征H会直接输入到解码层,以进行结果预测。我们的模型选择HH作为相似示例的判断依据,因为在高维潜在空间中相近的示例更有可能具有相同的映射方式和实体类型。计算测试输入与每个预定义人工样本的融合特征H的余弦相似度。然后,选择前N个相似的预定义人工样本作为上下文示例,以启发ChatGPT生成辅助的精炼知识:
在这里插入图片描述
为了高效实现相似示例的感知,所有的多模态融合特征可以提前计算并存储。

三、数据集介绍

我们在两个公共 MNER 数据集上进行了实验:Twitter-2015和 Twitter-2017。这两个数据集都是从Twitter平台上收集的,包含了文本和图像的配对信息,主要用于研究在社交媒体短文本场景下的多模态命名实体识别和情感分析等任务。、

  1. Twitter-2015: 推文中的文本部分被手动标注了命名实体,并使用BIO2(Beginning- Inside-Outside)标注方案对命名实体进行分类。实体类别包括人物(Person)、组织(Organization)、地点(Location)等。3373/723/723(train/development/test)

三、性能展示

在这里插入图片描述

  • 本文所有资源均可在该地址处获取。

实现过程

在下载附件并准备好数据集并调试代码后,进行下面的步骤,附件已经调通并修改,可直接正常运行;
环境要求

python == 3.7
torch == 1.13.1
transformers == 4.30.2
modelscope == 1.7.1
  1. 我们的项目基于AdaSeq, AdaSeq项目基于Python版本>= 3.7和PyTorch版本>= 1.8。

  2. 下载

git clone https://github.com/modelscope/adaseq.git
cd adaseq
pip install -r requirements.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
  1. 训练模型
python -m scripts.train -c examples/ER/twitter-15.yamlpython -m scripts.train -c examples/ER/twitter-17.yaml

运行过程

训练过程

在这里插入图片描述

http://www.mmbaike.com/news/43095.html

相关文章:

  • 中国深圳航空公司官方网站今日新闻热点10条
  • 无锡公司网站设计个人网页怎么做
  • 做网站的公司 贵阳谷歌推广网站
  • 深圳网站建设创造者网店推广实训系统
  • 深圳专业营销网站制作怎样做搜索引擎推广
  • 深圳市做网站的公司电商平台推广方式有哪些
  • 政府网站建设机构健全友情链接的检查方法
  • 做地方生活网站免费建站平台
  • 上海企业工商查询成都网站seo诊断
  • 义乌网站优化建设软文发布的平台与板块
  • 太原市手机网站建设宁波技术好的企业网站制作
  • 廊坊网站建设-商昊网络搜索引擎广告形式有
  • 怎样做网站后台优化外包网络推广
  • 公众号开发人员名单google搜索优化方法
  • 校园二手网站开发如何投放网络广告
  • 新网站排名优化怎么做项目推广方案怎么写
  • 烟台市做网站seo最新快速排名
  • 河南专业网站建设公司推荐google推广妙招
  • 区块链做网站都有哪些内容呢seo网站设计工具
  • 天津网站建设icp备百度指数免费查询
  • 网站域名到期查询广告推广平台网站
  • 购物网站难做吗交友平台
  • 上海做网站多少钱北京优化推广公司
  • 批量建wordpress河北百度竞价优化
  • 网站首页域名如何设置访问快站长工具官网查询
  • 江苏无锡重要通知北京seo平台
  • 做长直播的房地产网站网站建设规划要点详解
  • 免费的网站推广怎么做效果好营销渠道管理
  • 做报告的网站百度代运营
  • 中小企业营销型网站建设重庆seowhy整站优化