当前位置: 首页 > news >正文

域名购买成功后网站怎么建设1元购买域名

域名购买成功后网站怎么建设,1元购买域名,网络架构怎么看,网站开发体系模式识别 —— 第六章 支持向量机(SVM)与核(Kernel) 文章目录模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)硬间隔(Hard-Margin)软间隔(Soft…

模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)

文章目录

  • 模式识别 —— 第六章 支持向量机(SVM)与核(Kernel)
    • 硬间隔(Hard-Margin)
    • 软间隔(Soft-Margin)
    • 核kernel
    • 对偶问题
      • 硬间隔优化问题的对偶转变
      • 考点
      • 软间隔优化问题的对偶转变

开始之前先推荐一个个人感觉把SVM讲的特别好的课程视频(尤其是转对偶问题那一部分),浙大胡浩基老师手写板书讲的,真的草履虫都能看懂!

点一下 嗖~就过去

硬间隔与软间隔区别如下:

硬间隔
完全分类准确,只在数据是线性可分离的时候才有效。其损失函数不存在,损失值为0。但它对异常值非常敏感,无法很好的泛化。

软间隔
要避免这些问题,最好使用更灵活的模型。目标是尽可能在保持最大间隔宽度和限制间隔违例之间找到良好的平衡,这就是软间隔分类。

所以软间隔允许一定量的样本分类错误;优化函数包括两个部分,一部分是点到平面的间隔距离,一部分是误分类的损失个数;C是惩罚系数,误分类个数在优化函数中的权重值;权重值越大,误分类的损失惩罚的越厉害。

硬间隔(Hard-Margin)

我们想找到一个超平面让其线性可分,数学表述如下:
在这里插入图片描述
a式子与b式子合并可得到下面的统一表示。

现在我们想让在这个分界线(面)附近的点(即支持向量)离它尽量远一点。由点到直线距离公式来使得Margin最大。
在这里插入图片描述
然后我们想办法将最大化Margin转化为下面这个优化问题:
在这里插入图片描述
怎么转化的呢?首先我们有两个事实条件:
在这里插入图片描述
之后:
在这里插入图片描述

此时,对于非支持向量那就相当于∣wTx0+b∣>1\lvert w^Tx_0+b \rvert >1wTx0+b>1
把y写进去来代替绝对值符号的作用就可以得到新的限制条件y(wTx0+b)≥1y(w^Tx_0+b) \geq 1y(wTx0+b)1

最后我们为了后续求导方便,我们可以在目标函数处多加一个12\frac{1}{2}21,如下:

在这里插入图片描述
这样就变成了一个凸优化的问题,即要么无解、要么只有一个极值。因此局部极值就是最值。

软间隔(Soft-Margin)

在这里插入图片描述
SVM对训练集里面的每个样本(xi,yi)(x_i,y_i)(xi,yi)引入了一个松弛变量ξi≥0ξ_i≥0ξi0,使函数间隔加上松弛变量大于等于1,也就是说条件变量改为如下:

yi(w∙xi+b)≥1−ξiyi(w∙xi+b)≥1−ξiyi(wxi+b)1ξi

加入松弛变量ξiξ_iξi后,损失函数就需要改写为:
min12∣∣wi∣∣2+C∑i=1nξimin\frac12||w_i||^2+C\sum_{i=1}^nξ_imin21∣∣wi2+Ci=1nξi

s.t.yi(wTxi+b)≥1−ξi(i=1,2,...m)s.t. \quad y_i(w^Tx_i+b)≥1−ξ_i(i=1,2,...m)s.t.yi(wTxi+b)1ξi(i=1,2,...m)

ξi≥0(i=1,2,...m)ξ_i≥0(i=1,2,...m)ξi0(i=1,2,...m)

这里,C>0为惩罚参数,可以理解为我们一般回归和分类问题正则化时候的参数。C越大,对误分类的惩罚越大,C越小,对误分类的惩罚越小。

也就是说,我们希望12∣∣wi∣∣2\frac12||w_i||^221∣∣wi2尽量小,误分类的点尽可能的少。C是协调两者关系的正则化惩罚系数。在实际应用中,需要调参来选择。

核kernel

对于在低维线性不可分的数据,在映射到了高维以后,就变成线性可分的了。例如:
在这里插入图片描述

左边是在二维空间的投影,我们没办法找到一条直线将两个类别区分开。但是如果我们将二维空间映射到三维空间的话,我们就可以找到一个超平面在三维中线性可分。

就像是三体中狄奥伦娜能进入四维空间后轻易的取人脑子一样。

维度越高线性可分就越容易。但是映射成的高维维度是爆炸性增长的,这个计算量实在是太大了,而且如果遇到无穷维的情况,就根本无从计算了。这就要用到我们的核函数了。

核函数的价值在于它虽然也是将特征进行从低维到高维的转换,但核函数好在它在低维上进行计算,而将实质上的分类效果(利用了内积)表现在了高维上,这样避免了直接在高维空间中的复杂计算,真正解决了SVM线性不可分的问题。

线性核函数
线性核函数(Linear Kernel)其实就是內积,如下:
K(x,y)=x∙yK(x,y)=x∙yK(x,y)=xy

多项式核函数
多项式核函数(Polynomial Kernel)是线性不可分SVM常用的核函数之一,公式如下:
K(x,y)=(γx∙y+r)dK(x,y)=(γx∙y+r)^dK(x,y)=(γxy+r)d

高斯核函数
高斯核函数(Gaussian Kernel),在SVM中也称为径向基核函数(Radial Basis Function,RBF),它是非线性分类SVM最主流的核函数。libsvm默认的核函数就是它。公式如下:

K(x,y)=e−∣∣x−y∣∣22σ2K(x,y)=e^{-\frac{||x-y||^2}{2\sigma ^2}}K(x,y)=e2σ2∣∣xy2

对偶问题

这部分建议看视频部分的讲解,讲的真的超级棒!

这里我们采用的是拉格朗日乘子将其转化成对偶问题,思路如下:

在这里插入图片描述

硬间隔优化问题的对偶转变

按照上述思路,首先我们将限制条件转换成a(x)≤0a(x) \leq 0a(x)0的形式:
在这里插入图片描述
之后我们构建拉格朗日常数:
在这里插入图片描述
因为是求最值,所以我们求导进行回代:
在这里插入图片描述

考点

这是我们这学期的期末考试题,老师提前透露的。也是类似上面的推导,只不过要简单一点再。

就是如果目标函数不是wTxi+bw^Tx_i + bwTxi+b而是wTxiw^Tx_iwTxi,请进行对偶问题的转换。其实是变简单了,不用对b进行求导回代了。解法如下:

在这里插入图片描述
可恶啊,背面画着图透过来了。算了,凑合看吧,其实结果是一样的。

软间隔优化问题的对偶转变

在这里插入图片描述在这里插入图片描述

http://www.mmbaike.com/news/43817.html

相关文章:

  • 现在还做响应式网站吗seo关键词外包公司
  • 网站被网站建设的人控制了中国最新军事新闻
  • 网站建设原型图如何制作一个自己的网站
  • 企业标准化建设优化关键词排名软件
  • 行业门户型网站制作平台广告推广
  • 住房与城乡建设部网站注册中心百度一下网页版搜索引擎
  • 中职专业设计网站网络推广服务
  • 建设机械网站精英凡科网免费建站
  • 设计一套企业网站设计报价软文是什么意思通俗点
  • 手机网站无响应怎么建立自己的网站平台
  • 中文儿童网站模板网站建设及网络推广
  • 海外广告投放公司宁波seo公司推荐
  • ecs怎么添加wordpress太原百度搜索排名优化
  • 企业网站搜索推广全球中文网站排名
  • 微信建设网站哪家好网站批量收录
  • 没有网站怎么做链接视频教程品牌网络seo方案外包
  • 毕业设计网站怎么做足球最新世界排名表
  • 家纺 网站建设 中企动力潍坊网站建设解决方案
  • 招聘网站简历数据分析怎么做新冠病毒最新消息
  • 想要提高网站排名应该怎么做免费网络推广网站
  • wordpress部署文件夹灰色关键词排名优化
  • 事业单位网站建设计划微信引流获客软件
  • 长沙网站制作公司推荐线上营销推广的公司
  • 高端网站建设网页设计百度广告投放价格
  • 博物馆 网站 建设电子商务是干什么的
  • 青岛怎样做网站中国seo
  • 池州网站制作哪家好网站查询站长工具
  • 铁路工程造价信息网重庆网站seo建设哪家好
  • 代做视频的网站好seo优化关键词0
  • 东阿做网站站长网站查询