当前位置: 首页 > news >正文

郑州做网站哪里便宜搜索引擎优化的基本内容

郑州做网站哪里便宜,搜索引擎优化的基本内容,wordpress邮件,wordpress会员卡密一 、问题 如何计算基于不同变量的操作如矩阵乘法。 二、具体实现 0.4版本以前,张量是包裹在变量之中的,后者有三个属性grad、volatile和 requires_grad属性。(grad 就是梯度属性,requires_grad属性就是 是否需要存储梯度&#x…

一 、问题

      如何计算基于不同变量的操作如矩阵乘法。

二、具体实现

      0.4版本以前,张量是包裹在变量之中的,后者有三个属性grad、volatile和 requires_grad属性。(grad 就是梯度属性,requires_grad属性就是 是否需要存储梯度,volatile=True是Variable的另一个重要的标识,它能够将所有依赖它的节点全部设为volatile=True,其优先级比requires_grad=True高。因而volatile=True的节点不会求导,即使requires_grad=True,也不会进行反向传播,对于不需要反向传播的情景(inference,测试推断)(从0.4起, Variable 正式合并入Tensor, Variable 本来实现的自动微分功能,Tensor就能支持。读者还是可以使用Variable(tensor), 但是这个操作其实什么都没做。建议读者以后直接使用tensor。)

      代码:

z = Variable(torch.Tensor(4, 4).uniform_(-5, 5))  #生成一个4×4 的均匀分布产生的张量;print(z)tensor([[-0.3071, -3.6691, -2.8417, -1.1818],
[-1.4654, -0.4344, -2.0130, -2.3842],
[ 1.3962, 1.4962, -2.0996, 1.8881],
[-1.9797, 0.2337, -1.0308, 0.1266]])print('Requires Gradient : %s ' % (z.requires_grad))
print('Volatile : %s ' % (z.volatile))
print('Gradient : %s ' % (z.grad))
print(z.data)Requires Gradient : False
Volatile : False
Gradient : None
tensor([[-0.3071, -3.6691, -2.8417, -1.1818],
[-1.4654, -0.4344, -2.0130, -2.3842],
[ 1.3962, 1.4962, -2.0996, 1.8881],
[-1.9797, 0.2337, -1.0308, 0.1266]])

   三、问题2

          如何基于变量计算如矩阵—向量、矩阵—矩阵以及向量—向量计算呢?

   四、实现方式

          首要的条件是张量的长度或形状必须匹配,才能进行矩阵基础的运算;标量的张量定义就是一个数字,1D张量就是向量,2D张量就是矩阵。n维度矩阵时,就可以归纳为张量。在pytorch中进行代数计算时,矩阵和向量或标量的维度必须匹配。

#张量操作
mat1 = torch.FloatTensor(4,4).uniform_(0,1)
mat1
tensor([[0.9002, 0.9188, 0.1386, 0.3701], [0.1947, 0.2268, 0.9587, 0.2615], [0.7256, 0.7673, 0.5667, 0.1863], [0.4642, 0.4016, 0.9981, 0.8452]])
mat2 = torch.FloatTensor(4,4).uniform_(0,1)
mat2
tensor([[0.4962, 0.4947, 0.8344, 0.6721], [0.1182, 0.5997, 0.8990, 0.8252], [0.1466, 0.1093, 0.8135, 0.9047], [0.2486, 0.1873, 0.6159, 0.2471]])
vec1 = torch.FloatTensor(4).uniform_(0,1)
vec1
tensor([0.7582, 0.6879, 0.8949, 0.3995])# 标量加法
mat1 + 10.5
tensor([[11.4002, 11.4188, 10.6386, 10.8701], [10.6947, 10.7268, 11.4587, 10.7615], [11.2256, 11.2673, 11.0667, 10.6863], [10.9642, 10.9016, 11.4981, 11.3452]])# 标量减法
mat2 - 0.20tensor([[ 0.2962, 0.2947, 0.6344, 0.4721], [-0.0818, 0.3997, 0.6990, 0.6252], [-0.0534, -0.0907, 0.6135, 0.7047], [ 0.0486, -0.0127, 0.4159, 0.0471]])# 向量和矩阵加法mat1 + vec1
tensor([[1.6584, 1.6067, 1.0335, 0.7695], [0.9530, 0.9147, 1.8537, 0.6610], [1.4839, 1.4553, 1.4616, 0.5858], [1.2224, 1.0895, 1.8931, 1.2446]])mat2 + vec1
tensor([[1.2544, 1.1826, 1.7293, 1.0716], [0.8764, 1.2876, 1.7939, 1.2247], [0.9049, 0.7972, 1.7084, 1.3042], [1.0068, 0.8752, 1.5108, 0.6466]])# 如果矩阵维度不同 则不适合矩阵加法和乘法。如果矩阵维度一样,则可以相乘。
“@表示常规的数学上定义的矩阵相乘;*表示两个矩阵对应位置处的两个元素相乘。”
In the following script, the matrix addition throws an error when you multiply similar dimensions—mat1 with mat1. You get relevant results.# matrix-matrix addition
mat1 + mat2
tensor([[1.3963, 1.4135, 0.9730, 1.0422], [0.3129, 0.8265, 1.8577, 1.0867], [0.8722, 0.8766, 1.3802, 1.0910], [0.7127, 0.5888, 1.6141, 1.0923]])
mat1 * mat1
tensor([[0.8103, 0.8442, 0.0192, 0.1370], [0.0379, 0.0514, 0.9192, 0.0684], [0.5265, 0.5888, 0.3211, 0.0347], [0.2155, 0.1613, 0.9963, 0.7143]])

    

      

http://www.mmbaike.com/news/44627.html

相关文章:

  • 做网站用php还是python公司官网开发制作
  • 什么网站可以接单做设计方案百度推广的步骤
  • 品牌企业网站建设公司成都关键词自然排名
  • 网站模板织梦免费北京seo技术
  • 网上做计算机一级的网站是大数据营销精准营销
  • asp.net门户网站项目怎么做百度网盘客服电话24小时
  • 黄冈建设局网站站长之家是干什么的
  • 企业微网站模版百度产品大全首页
  • 写软文推广网站seo诊断工具
  • 赣州做网站谷歌网页版
  • 广西 网站开发百度投放
  • 天河网站建设设计搜狗推广
  • 国外设计网站pinterest下载网站要怎么创建
  • 网站做外链平台有哪些网站排名怎么优化
  • 安阳网站建设商祺找客户的软件有哪些
  • 云南专业做网站多少钱百度 seo 工具
  • php网站模板开源百度指数大数据
  • 淘宝网站短链接怎么做四川seo整站优化费用
  • 淘宝推广网站怎么做网络广告营销的概念
  • 下载网站开发流量精灵
  • 学校招办网站怎么做淘宝客推广平台
  • 学做内账的网站seo域名如何优化
  • 哪个网站可以做曝光台seo都用在哪些网站
  • 做搜狗pc网站软件下载关键词优化精灵
  • 网站一直不被百度收录火星时代教育培训机构官网
  • 科技公司 网站设计经典案例淄博网站推广
  • 如何做网络投票网站网络营销方案案例范文
  • 深圳企业高端网站建设人工在线客服
  • 男人和女人做羞羞的事情网站标题优化
  • 网站型和商城型有什么区别营销战略包括哪些方面