当前位置: 首页 > news >正文

wordpress评论调用优化防控举措

wordpress评论调用,优化防控举措,儿童编程教学入门教程,漯河住房建设局网站一、简介 GNN(Graph Neural Network)和GCN(Graph Convolutional Network)都是基于图结构的神经网络模型。本文目标就是打代码基础,未用PyG,来扒一扒Graph Net两个基础算法的原理。直接上代码。 二、代码 …

一、简介

        GNN(Graph Neural Network)和GCN(Graph Convolutional Network)都是基于图结构的神经网络模型。本文目标就是打代码基础,未用PyG,来扒一扒Graph Net两个基础算法的原理。直接上代码。

二、代码

import time
import random
import os
import numpy as np
import math
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Moduleimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optimimport scipy.sparse as sp#配置项
class configs():def __init__(self):# Dataself.data_path = r'E:\code\Graph\data'self.save_model_dir = r'\code\Graph'self.model_name = r'GCN' #GNN/GCNself.seed = 2023self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")self.batch_size = 64self.epoch = 200self.in_features = 1433  #core ~ feature:1433self.hidden_features = 16  # 隐层数量self.output_features = 8  # core~paper-point~ 8类self.learning_rate = 0.01self.dropout = 0.5self.istrain = Trueself.istest = Truecfg = configs()def seed_everything(seed=2023):random.seed(seed)os.environ['PYTHONHASHSEED']=str(seed)np.random.seed(seed)torch.manual_seed(seed)seed_everything(seed = cfg.seed)#数据
class Graph_Data_Loader():def __init__(self):self.adj, self.features, self.labels, self.idx_train, self.idx_val, self.idx_test = self.load_data()self.adj = self.adj.to(cfg.device)self.features = self.features.to(cfg.device)self.labels = self.labels.to(cfg.device)self.idx_train = self.idx_train.to(cfg.device)self.idx_val = self.idx_val.to(cfg.device)self.idx_test = self.idx_test.to(cfg.device)def load_data(self,path=cfg.data_path, dataset="cora"):"""Load citation network dataset (cora only for now)"""print('Loading {} dataset...'.format(dataset))idx_features_labels = np.genfromtxt(os.path.join(path,dataset,dataset+'.content'),dtype=np.dtype(str))features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)labels = self.encode_onehot(idx_features_labels[:, -1])# build graphidx = np.array(idx_features_labels[:, 0], dtype=np.int32)idx_map = {j: i for i, j in enumerate(idx)}edges_unordered = np.genfromtxt(os.path.join(path,dataset,dataset+'.cites'),dtype=np.int32)edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),dtype=np.int32).reshape(edges_unordered.shape)adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(labels.shape[0], labels.shape[0]),dtype=np.float32)# build symmetric adjacency matrixadj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)features = self.normalize(features)adj = self.normalize(adj + sp.eye(adj.shape[0]))idx_train = range(140)idx_val = range(200, 500)idx_test = range(500, 1500)features = torch.FloatTensor(np.array(features.todense()))labels = torch.LongTensor(np.where(labels)[1])adj = self.sparse_mx_to_torch_sparse_tensor(adj)idx_train = torch.LongTensor(idx_train)idx_val = torch.LongTensor(idx_val)idx_test = torch.LongTensor(idx_test)return adj, features, labels, idx_train, idx_val, idx_testdef encode_onehot(self,labels):classes = set(labels)classes_dict = {c: np.identity(len(classes))[i, :] for i, c inenumerate(classes)}labels_onehot = np.array(list(map(classes_dict.get, labels)),dtype=np.int32)return labels_onehotdef normalize(self,mx):"""Row-normalize sparse matrix"""rowsum = np.array(mx.sum(1))r_inv = np.power(rowsum, -1).flatten()r_inv[np.isinf(r_inv)] = 0.r_mat_inv = sp.diags(r_inv)mx = r_mat_inv.dot(mx)return mxdef sparse_mx_to_torch_sparse_tensor(self,sparse_mx):"""Convert a scipy sparse matrix to a torch sparse tensor."""sparse_mx = sparse_mx.tocoo().astype(np.float32)indices = torch.from_numpy(np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))values = torch.from_numpy(sparse_mx.data)shape = torch.Size(sparse_mx.shape)return torch.sparse.FloatTensor(indices, values, shape)#精度评价指标
def accuracy(output, labels):preds = output.max(1)[1].type_as(labels)correct = preds.eq(labels).double()correct = correct.sum()return correct / len(labels)#模型
#01-GNN
class GNNLayer(nn.Module):def __init__(self, in_features, output_features):super(GNNLayer, self).__init__()self.linear = nn.Linear(in_features, output_features)def forward(self, adj_matrix, features):hidden_features = torch.matmul(adj_matrix, features)  # GNN公式:H' = A * Hhidden_features = self.linear(hidden_features)  # 使用线性变换hidden_features = F.relu(hidden_features)  # 使用ReLU作为激活函数return hidden_features
class GNN(nn.Module):def __init__(self, in_features, hidden_features, output_features, num_layers=2):super(GNN, self).__init__()#输入维度in_features、隐藏层维度hidden_features、输出维度output_features、GNN的层数num_layersself.layers = nn.ModuleList([GNNLayer(in_features, hidden_features) if i == 0 else GNNLayer(hidden_features, hidden_features) for i inrange(num_layers)])self.output_layer = nn.Linear(hidden_features, output_features)def forward(self, adj_matrix, features):hidden_features = featuresfor layer in self.layers:hidden_features = layer(adj_matrix, hidden_features)output = self.output_layer(hidden_features)return F.log_softmax(output,dim=1)#02-GCN
class GraphConvolution(Module):"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907"""def __init__(self, in_features, out_features, bias=True):super(GraphConvolution, self).__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.FloatTensor(in_features, out_features))if bias:self.bias = Parameter(torch.FloatTensor(out_features))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):stdv = 1. / math.sqrt(self.weight.size(1))self.weight.data.uniform_(-stdv, stdv)if self.bias is not None:self.bias.data.uniform_(-stdv, stdv)def forward(self, input, adj):support = torch.mm(input, self.weight)output = torch.spmm(adj, support)if self.bias is not None:return output + self.biaselse:return outputdef __repr__(self):return self.__class__.__name__ + ' (' \+ str(self.in_features) + ' -> ' \+ str(self.out_features) + ')'class GCN(nn.Module):def __init__(self, in_features, hidden_features, output_features, dropout=cfg.dropout):super(GCN, self).__init__()self.gc1 = GraphConvolution(in_features, hidden_features)self.gc2 = GraphConvolution(hidden_features, output_features)self.dropout = dropoutdef forward(self, adj_matrix, features):x = F.relu(self.gc1(features, adj_matrix))x = F.dropout(x, self.dropout, training=self.training)x = self.gc2(x, adj_matrix)return F.log_softmax(x, dim=1)class graph_run():def train(self):t = time.time()#Create Train Processingall_data = Graph_Data_Loader()#创建一个模型model = eval(cfg.model_name)(in_features=cfg.in_features,hidden_features=cfg.hidden_features,output_features=cfg.output_features).to(cfg.device)optimizer = optim.Adam(model.parameters(),lr=cfg.learning_rate, weight_decay=5e-4)#Trainmodel.train()for epoch in range(cfg.epoch):optimizer.zero_grad()output = model(all_data.adj, all_data.features)loss_train = F.nll_loss(output[all_data.idx_train], all_data.labels[all_data.idx_train])acc_train = accuracy(output[all_data.idx_train], all_data.labels[all_data.idx_train])loss_train.backward()optimizer.step()loss_val = F.nll_loss(output[all_data.idx_val], all_data.labels[all_data.idx_val])acc_val = accuracy(output[all_data.idx_val], all_data.labels[all_data.idx_val])print('Epoch: {:04d}'.format(epoch + 1),'loss_train: {:.4f}'.format(loss_train.item()),'acc_train: {:.4f}'.format(acc_train.item()),'loss_val: {:.4f}'.format(loss_val.item()),'acc_val: {:.4f}'.format(acc_val.item()),'time: {:.4f}s'.format(time.time() - t))torch.save(model, os.path.join(cfg.save_model_dir, 'latest.pth'))  # 模型保存def infer(self):#Create Test Processingall_data = Graph_Data_Loader()model_path = os.path.join(cfg.save_model_dir, 'latest.pth')model = torch.load(model_path, map_location=torch.device(cfg.device))model.eval()output = model(all_data.adj,all_data.features)loss_test = F.nll_loss(output[all_data.idx_test], all_data.labels[all_data.idx_test])acc_test = accuracy(output[all_data.idx_test], all_data.labels[all_data.idx_test])print("Test set results:","loss= {:.4f}".format(loss_test.item()),"accuracy= {:.4f}".format(acc_test.item()))if __name__ == '__main__':mygraph = graph_run()if cfg.istrain == True:mygraph.train()if cfg.istest == True:mygraph.infer()

三、结果与讨论

        需要从网上下载cora数据集,数据组织形式如下图。

        测了下Params和GFLOPs,还是比较大的,发现若作为一个Net的Block还是需要优化的哈哈~

ModelParamsGFLOPs
GNN23.352K126.258M
ModelCora(/train/val/test)
GNN1.0000/0.7800/0.7620
GCN0.9714/0.7767/0.8290

四、展望

        未来可以考虑用PyG(PyTorch Geometric),毕竟PyG实现GAT等图网络、图的数据组织、加载会更加方便。Graph Net通常用可以用于属性数据的embedding模式,将属性数据可以作为一种补充特征加入Net去训练,看能不能发挥效能。

http://www.mmbaike.com/news/45260.html

相关文章:

  • 大数据营销的运营方式有哪些北京优化seo排名
  • 非诚勿扰吴铮真帮做网站的男人seo快速收录快速排名
  • 网络营销课程性质长沙专业竞价优化首选
  • 个人备案 网站简介怎么写潍坊seo培训
  • dedecms网站搬家抖音搜索关键词推广
  • wordpress网站 800cdn杭州优化排名哪家好
  • 手机网站 源码网络营销方法
  • wordpress 上传下载网站页面的优化
  • 常德市做公司网站的公司网站市场推广
  • 可以做结构式的网站软文推广文案范文
  • 易派客网站是谁做的搜索引擎调词平台多少钱
  • 从音乐网站下载歌曲做铃音要收费吗关键词优化的主要工具
  • 佛山网站建站建设郑州网络公司
  • 电商网站建设分析百度推广手机登录
  • 顺义企业建站seo优化排名
  • 南宁城乡建设委员会网站seo研究协会网是干什么的
  • 河南建设工程信息网 最权威平台中项网seo完整教程视频教程
  • 北京住房及城乡建设部网站网站搜索优化
  • 如何自己创建购物网站品牌推广网络公司
  • 2022年楼市最新消息绍兴seo网站管理
  • 商业摄影网站中央刚刚宣布大消息
  • 网站备案包括汕头seo排名收费
  • 设计模板图关闭站长工具seo综合查询
  • wordpress 会员支付宝电子商务seo
  • 有没有网站体彩足球竞彩比赛结果韩国比分
  • 做网站需要神百度广告联盟平台官网
  • 网站管理平台模板杭州网站优化推荐
  • 如何做高清pdf下载网站google推广专员招聘
  • 网站基础代码html网络宣传渠道
  • 黄山风景区门票多少钱电脑优化软件推荐