当前位置: 首页 > news >正文

做编程的网站有哪些内容企业网站seo哪里好

做编程的网站有哪些内容,企业网站seo哪里好,做动画上传网站赚钱么,网站未建设完善是什么意思python保存中间变量 原因: 最近在部署dust3r算法,虽然在本地部署了,也能测试出一定的结果,但是发现无法跑很多图片,为了能够测试多张图片跑出来的模型,于是就在打算在autodl上部署算法,但是由…

python保存中间变量

原因:

最近在部署dust3r算法,虽然在本地部署了,也能测试出一定的结果,但是发现无法跑很多图片,为了能够测试多张图片跑出来的模型,于是就在打算在autodl上部署算法,但是由于官方给定的代码是训练好模型后通过可视化三维模型的形式来给出的效果,所以在服务器上没有办法来可视化三维模型(可能有办法,但是总是有解决不了的报错,于是便放弃)

产生思路

打算把官方中的代码分成两部分,上部分是训练好的模型output变量,将output保存下来,下载到本地上,在本地上加载output变量,进而完成后续的代码操作。

保存中间变量的方式

通过下面方式output变量会以output.pkl的文件形式保存在当前文件夹下

import pickle
output=1 #这里就是要保存的中间变量
pickle.dump(output, open('output.pkl', 'wb'))

通过下面的方式来读取刚才保存的output.pkl文件,这样就可以顺利保存下来了

 f = open("output.pkl",'rb')output=pickle.loads(f.read())f.close()

原理

pickle是Python官方自带的库,提供dump函数实现Python对象的保存。支持自定义的对象,非常方便。Pandas的DataFrame和Obspy的Stream也都可以保存成pickle的格式。主要是以二进制的形式来保存成一种无逻辑的文件。

解决原来的问题

dust3r官方给的代码如下,其中服务器主要是在scene.show()这行代码中无法运行。

import osfrom dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerModeif __name__ == '__main__':model_path = "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"device = 'cuda'batch_size = 4schedule = 'cosine'lr = 0.01niter = 100model = load_model(model_path, device)# load_images can take a list of images or a directory# base_dir = 'tankandtemples/tankandtemples/intermediate/M60/images/'base_dir = 'croco/assets/'# 获取当前目录下的所有文件files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]images = load_images(files, size=512)pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)output = inference(pairs, model, device, batch_size=batch_size)# at this stage, you have the raw dust3r predictionsview1, pred1 = output['view1'], output['pred1']view2, pred2 = output['view2'], output['pred2']scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer)loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr)# retrieve useful values from scene:imgs = scene.imgsfocals = scene.get_focals()poses = scene.get_im_poses()pts3d = scene.get_pts3d()confidence_masks = scene.get_masks()# visualize reconstructionscene.show()# find 2D-2D matches between the two imagesfrom dust3r.utils.geometry import find_reciprocal_matches, xy_gridpts2d_list, pts3d_list = [], []for i in range(2):conf_i = confidence_masks[i].cpu().numpy()pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i])  # imgs[i].shape[:2] = (H, W)pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list)print(f'found {num_matches} matches')matches_im1 = pts2d_list[1][reciprocal_in_P2]matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]# visualize a few matchesimport numpy as npfrom matplotlib import pyplot as pln_viz = 10match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int)viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)img = np.concatenate((img0, img1), axis=1)pl.figure()pl.imshow(img)cmap = pl.get_cmap('jet')for i in range(n_viz):(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].Tpl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)pl.show(block=True)

将代码分成两部分,上部分由服务器来跑,下部分由本地来跑。

import os
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
if __name__ == '__main__':model_path = "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"device = 'cuda'batch_size = 32schedule = 'cosine'lr = 0.01niter = 300model = load_model(model_path, device)# load_images can take a list of images or a directorybase_dir = 'croco/assets/'# 获取当前目录下的所有文件files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]files_new = []for i in range(0,files.__len__(),10):files_new.append(files[i])images = load_images(files_new, size=512)pairs = make_pairs(images, scene_graph='complete', prefilter=None, symmetrize=True)output = inference(pairs, model, device, batch_size=batch_size)import picklepickle.dump(output, open('output.pkl', 'wb'))

本地代码

import os
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
if __name__ == '__main__':model_path = "checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"device = 'cuda'batch_size = 1schedule = 'cosine'lr = 0.01niter = 300base_dir = 'croco/assets/'# 获取当前目录下的所有文件files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]files_new = []for i in range(0,files.__len__(),4):files_new.append(files[i])print(files_new)import picklef = open("output.pkl",'rb')output=pickle.loads(f.read())f.close()view1, pred1 = output['view1'], output['pred1']view2, pred2 = output['view2'], output['pred2']scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer)loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr)# retrieve useful values from scene:imgs = scene.imgsfocals = scene.get_focals()poses = scene.get_im_poses()pts3d = scene.get_pts3d()confidence_masks = scene.get_masks()# visualize reconstructionscene.show()# find 2D-2D matches between the two imagesfrom dust3r.utils.geometry import find_reciprocal_matches, xy_gridpts2d_list, pts3d_list = [], []for i in range(2):conf_i = confidence_masks[i].cpu().numpy()pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i])  # imgs[i].shape[:2] = (H, W)pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list)print(f'found {num_matches} matches')matches_im1 = pts2d_list[1][reciprocal_in_P2]matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]# visualize a few matchesimport numpy as npfrom matplotlib import pyplot as pln_viz = 10match_idx_to_viz = np.round(np.linspace(0, num_matches-1, n_viz)).astype(int)viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)img = np.concatenate((img0, img1), axis=1)pl.figure()pl.imshow(img)cmap = pl.get_cmap('jet')for i in range(n_viz):(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].Tpl.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)pl.show(block=True)

总结

这种解决办法也不是根本解决办法,虽然比较麻烦,但是还是能将项目跑起来,也是没有办法的办法,在此做一个笔记记录。

http://www.mmbaike.com/news/45511.html

相关文章:

  • 苏州排名搜索优化seo查询在线
  • wordpress调整菜单栏距离百度优化关键词
  • 网站怎么更换页面图片在百度怎么发广告做宣传
  • 做网站前端用什么技术好百度统计代码安装位置
  • 免费的好网站网站seo诊断分析报告
  • 怎么做动态网站jsp网站流量统计工具有哪些
  • 徐州品牌网站建设宁波seo快速优化
  • 查企业数据要去什么网站外链系统
  • 手机触屏版网站开发可以搜任何网站的浏览器
  • 做交通分析的网站百度数字人内部运营心法曝光
  • 网站制作厂家火狐搜索引擎
  • 网站推广的目的有哪些在线建站平台免费建网站
  • 自己做淘宝返利网站吗百度如何投放广告
  • 服装网站设计欣赏免费b站推广软件
  • 有什么网站可以接活做设计平台推广费用
  • 济宁网站建设吊装seo搜索引擎优化试题
  • 做网站 博客2021十大网络舆情案例
  • 广东网站建设哪家好页面seo优化
  • 创意设计公司排行榜廊坊seo网络推广
  • 海南省建设考试网站新泰网站seo
  • 中英文的网站设计百度关键词搜索量排行
  • 南漳县建设局网站百度百科入口
  • 网站海外推广方案写软文的平台有哪些
  • wordpress主题 手机appseo教程技术
  • 汇鑫网站建设线上营销活动主要有哪些
  • 昆明网站建设是什么站长之家网站排行榜
  • 自己可以做公司网站吗百度推广收费多少
  • htmlcss做旅游网站b2b电子商务平台
  • 网站英文版建设直接进网站的浏览器
  • 顺德大良营销网站建设班级优化大师官网