当前位置: 首页 > news >正文

淘客怎样做网站seo在线优化平台

淘客怎样做网站,seo在线优化平台,wordpress连接微信,网站合同书关于 情绪检测,是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中,真实数据不足,经常导致情绪检测模型的性能不佳。因此,对数据进行增强,成为了一个提升下游任务的重要的手段。本项目通过DCGAN模型实现脑…

关于

情绪检测,是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中,真实数据不足,经常导致情绪检测模型的性能不佳。因此,对数据进行增强,成为了一个提升下游任务的重要的手段。本项目通过DCGAN模型实现脑电信号的扩充。

 图片来源:https://www.medicalnewstoday.com/articles/seizure-eeg

工具

数据

方法实现

DCGAN速递:https://arxiv.org/abs/1511.06434

数据加载和预处理
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import Embedding
from tensorflow.keras.layers import LSTM
from tensorflow.keras.optimizers import SGD
from sklearn.metrics import accuracy_score
from model_DCGAN import DCGAN
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from sklearn.utils import shuffle
from sklearn.ensemble import GradientBoostingClassifieruse_feature_reduction = Truetf.keras.backend.clear_session()df=pd.read_csv('dataset/emotions.csv')encode = ({'NEUTRAL': 0, 'POSITIVE': 1, 'NEGATIVE': 2} )
#new dataset with replaced values
df_encoded = df.replace(encode)print(df_encoded.head())
print(df_encoded['label'].value_counts()),x=df_encoded.drop(["label"]  ,axis=1)
y = df_encoded.loc[:,'label'].valuesscaler = StandardScaler()
scaler.fit(x)
x = scaler.transform(x)
y = to_categorical(y)x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 4)if use_feature_reduction:# Feature reduction partest = GradientBoostingClassifier(n_estimators=10, learning_rate=0.1, random_state=0).fit(x_train,y_train.argmax(-1))# Obtain feature importance results from Gradient Boosting Regressorfeature_importance = est.feature_importances_epsilon_feature = 1e-2x_train = x_train[:, feature_importance > epsilon_feature]x_test = x_test[:, feature_importance > epsilon_feature]
设置DCGAN优化器

# setup optimzers
gen_optim = Adam(1e-4, beta_1=0.5)
disc_optim = RMSprop(5e-4)
 训练GAN生成类别0脑电数据
# generate samples for class 0
generator_class = 0
dcgan = DCGAN(gen_optim, disc_optim, noise_dim=100, dropout=0.3, input_dim=x_train.shape[2])
x_train_class_0 = x_train[y_train[:,generator_class]==1,:]
loss_history_class_0, acc_history_class_0, grads_history_class_0 = dcgan.train(x_train_class_0, epochs=100)
print("Class 0 fake samples are generating")
generator_class_0 = dcgan.generator
generated_samples_class_0, _ = dcgan.generate_fake_data(N=len(x_train_class_0))
  训练GAN生成类别1脑电数据
# generate samples for class 1
generator_class = 1
dcgan = DCGAN(gen_optim, disc_optim, noise_dim=100, dropout=0.3, input_dim=x_train.shape[2])
x_train_class_1 = x_train[y_train[:,generator_class]==1,:]
loss_history_class_1, acc_history_class_1, grads_history_class_1 = dcgan.train(x_train_class_1, epochs=100)
print("Class 1 fake samples are generating")
generator_class_1 = dcgan.generator
generated_samples_class_1, _ = dcgan.generate_fake_data(N=len(x_train_class_1))
 训练GAN生成类别2脑电数据
# generate samples for class 2
generator_class = 2
dcgan = DCGAN(gen_optim, disc_optim, noise_dim=100, dropout=0.3, input_dim=x_train.shape[2])
x_train_class_2 = x_train[y_train[:,generator_class]==1,:]
loss_history_class_2, acc_history_class_2, grads_history_class_2 = dcgan.train(x_train_class_2,epochs=100)
print("Class 2 fake samples are generating")
generator_class_2 = dcgan.generator
generated_samples_class_2, _ = dcgan.generate_fake_data(N=len(x_train_class_2))
合成数据融入真实训练数据集
generated_samples = np.concatenate((generated_samples_class_0,generated_samples_class_1,generated_samples_class_2),axis=0)
generated_y =np.concatenate((np.zeros((len(x_train_class_0),),dtype=np.int32),np.ones((len(x_train_class_1),),dtype=np.int32),2 * np.ones((len(x_train_class_2),),dtype=np.int32)),axis=0)generated_y = to_categorical(generated_y)x_train_all = np.concatenate((x_train,generated_samples),axis=0)
y_train_all = np.concatenate((y_train,generated_y), axis=0)#shuffle training data
x_train_all, y_train_all = shuffle(x_train_all,y_train_all)
 基于数据增强的LSTM模型情绪检测
model = Sequential()
model.add(LSTM(64, input_shape=(1,x_train_all.shape[2]),activation="relu",return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(32,activation="sigmoid"))
model.add(Dropout(0.2))
model.add(Dense(3, activation='sigmoid'))
model.compile(loss = 'categorical_crossentropy', optimizer = "adam", metrics = ['accuracy'])
model.summary()history = model.fit(x_train_all, y_train_all, epochs = 250, validation_data= (x_test, y_test))
score, acc = model.evaluate(x_test, y_test)pred = model.predict(x_test)
predict_classes = np.argmax(pred,axis=1)
expected_classes = np.argmax(y_test,axis=1)
print(expected_classes.shape)
print(predict_classes.shape)
correct = accuracy_score(expected_classes,predict_classes)
print(f"Test Accuracy: {correct}")

已附DCGAN模型

相关项目和代码问题,欢迎沟通交流。

http://www.mmbaike.com/news/45557.html

相关文章:

  • 用服务器建立网站教程百度的营销策略
  • 苹果cms建站教程12345微信公众号
  • 石家庄网站制作seo外链建设的方法有
  • 个人网站建设费用seo是什么意思啊
  • 标准网站是哪个网站排名优化课程
  • 门户网站建设教程深圳seo优化seo优化
  • 手机网站架构360手机优化大师下载
  • 机票网站开发知乎企业官网
  • 上海做网站设计推广团队
  • 用rp怎么做网站按钮下拉菜单百度地图3d实景地图
  • 做企业网站有哪些好处怎么营销自己的产品
  • asp网站qq登录电话投放小网站
  • 如何制作钓鱼网站大型网站建站公司
  • 湖南建设银行官网网站首页app推广引流
  • 万网网站备案查询竞价推广账户托管费用
  • 网站怎么做才能用手机打开产品如何做网络推广
  • 商圈外卖网站怎么做关键词首页排名优化平台
  • 企业局域网做网站屏蔽手机网站智能建站
  • 做网站找外包好吗seo广告平台
  • 9377 这种网站怎么做产品设计公司
  • 龙华网站建设百度广告代理商加盟
  • 企业网址怎么弄南京seo网站管理
  • 网站安全建设 应用开发野狼seo团队
  • 长沙市在建工程项目seo软件视频教程
  • 做科学小制作的视频网站移动建站优化
  • 门户网站是如何做引流的哪个搜索引擎能搜敏感内容
  • 网站备案icp网站排名查询工具有哪些
  • 网站开发完了备案营销型网站开发公司
  • ipv6在家做网站广州日新增51万人
  • 武汉市住建局零基础seo入门教学