当前位置: 首页 > news >正文

汕头网站制作全过程深圳网站建设优化

汕头网站制作全过程,深圳网站建设优化,舆情分析网站免费,展馆设计方案ppt目录 前言道路栅格化轨迹聚类参考资料 前言 很多针对道路轨迹的挖掘项目前期都需要对道路进行一段一段的分割成路段,然后对每一个路段来单独进行考察,如设定路段限速标识,超速概率等,如何对道路进行划分,其实是一个很…

目录

  • 前言
  • 道路栅格化
  • 轨迹聚类
  • 参考资料

前言

很多针对道路轨迹的挖掘项目前期都需要对道路进行一段一段的分割成路段,然后对每一个路段来单独进行考察,如设定路段限速标识,超速概率等,如何对道路进行划分,其实是一个很有技巧性的活,最直白的有以下2种策略

  • 道路栅格化

  • 轨迹点聚类

下面分别对两种策略进行简单讲解。

道路栅格化

栅格化

道路栅格化,简言之就是用一张纵横交错的网去尽可能覆盖道路所在的范围,这样,整个区域就被划分成一块一块的小矩形,形成栅格化,可以给每一个栅格编号,形成编号序列,而且可以判断出哪些栅格有轨迹点落入,哪些是没有轨迹点落入的,有轨迹点的栅格相对稀疏一些,此方法关键要考虑道路的经纬度最大范围和网眼大小,下面是道路栅格化处理主函数。

def roadRaster(road_data, unit_gap): #轨迹栅格化min_lng, max_lng = np.min(road_data['lng']), np.max(road_data['lng']) #经度范围min_lat, max_lat = np.min(road_data['lat']), np.max(road_data['lat']) #纬度范围lng_gap = max_lng - min_lng  lat_gap = max_lat - min_latm = int(lng_gap/unit_gap)n = int(lat_gap/unit_gap)print(fleet_id,  min_lng, max_lng, min_lat, max_lat, m, n, (m-1)*(n-1))slice_lng = np.linspace(min_lng, max_lng, m)  #对经度等间距划分slice_lat = np.linspace(min_lat, max_lat, n) #对纬度等间距划分idx = 0for i in range(len(slice_lng)-1):for j in range(len(slice_lat)-1):raster_a_lng = slice_lng[i]raster_a_lat = slice_lat[j]raster_b_lng = slice_lng[i+1]raster_b_lat = slice_lat[j+1]idx +=1

代码解读,首先,找出道路轨迹点经纬度最大最小值,然后对经纬度跨度进行等间距划分,然后对经纬度循环,不断生成栅格左下角点的经纬度对和右上角的经纬度对,由这样对顶角的点对就可以刻画出栅格,其中,unit_gap很关键,直接决定网眼大小,按下面经纬度小数点对应精度来粗略估计

小数点后位数精度
第1位10000米
第2位1000米
第3位100米
第4位10米
第5位1米
第6位0.1米
第7位0.01米
第8位0.001米

轨迹聚类

轨迹聚类,就是根据历史行驶轨迹点的稠密程度来进行聚合成一簇一簇的轨迹点集合,其中同一簇的轨迹点尽可能靠在一起,不同一簇的轨迹点尽可能分散开来,然后把一簇的轨迹点范围提炼出来,如提取其四至,这样便把整个道路进行的切分。具体可以利用DBSCAN算法实现,DBACAN是一种基于密度的聚类算法,可以用于对道路轨迹点进行聚类。具体步骤如下:

  • 初始化:将所有轨迹点标记为未访问状态,并设置一个固定的邻域半径r和最小聚类数量minPts。

  • 随机选择一个未访问的点p,以p为中心,搜索其邻域内所有未访问点,并将这些点标记为已访问状态。

  • 如果邻域内访问点的数量小于minPts,则将p标记为噪声点,否则创建一个新的聚类,并将p加入该聚类中。

  • 遍历邻域内所有访问点的邻域,将其未访问的邻域点添加到聚类中,并将其标记为已访问状态。

  • 重复2-4步,直到所有点都被访问过。

  • 最后,将所有噪声点从聚类中去除。

需要注意的是,选择合适的邻域半径r和最小聚类数量minPts非常重要,这会影响到聚类结果的质量。可以通过试验不同的参数来获得最佳结果,下面是利用DBSCAN算法实现轨迹点聚类的主函数。

def roadCluster(trajectory): # 使用DBSCAN聚类算法进行路段划分sample_num = int(0.6*len(trajectory))print(sample_num)trajectory_sample =  trajectory.sample(sample_num) #随机抽样60%样本点 locations = np.array(trajectory_sample[['lat','lng']]) #位置数据param_grid = {"eps":[0.0005, 0.001, 0.003,  0.005, 0.006, 0.01],"min_samples":[6,  9, 15, 20, 30, 50, 70]} # epsilon控制聚类的距离阈值,min_samples控制形成簇的最小样本数dbscan = DBSCAN()grid_search = GridSearchCV(estimator= dbscan, param_grid=param_grid, scoring=myScore)grid_search.fit(locations)print("best parameters:{}".format(grid_search.best_params_))print("label:{}".format(grid_search.best_estimator_.labels_))labels = grid_search.best_estimator_.labels_  #-1表示离群点score = silhouette_score(locations, labels, metric='euclidean') #轮廓系数total_cluster = labels.max() - labels.min()print("一共聚了{}类, 轮廓系数为{}".format(total_cluster, score))road_label = pd.DataFrame({"road_label": labels})trajectory_sample.reset_index(drop=True, inplace=True)road_label.reset_index(drop=True, inplace=True)cluster_data = pd.concat([trajectory_sample, road_label], axis = 1, ignore_index=True) #带标签的行驶记录cluster_data.columns= ['lng', 'lat', 'speed', 'road_label']cluster_data['road_label'] = [str(i) for i in cluster_data['road_label']]print(cluster_data)return cluster_data

代码解读,聚类的对象locations由经纬度组成的2维数组,通过grid_search 来寻找最佳的超参数epsilon和min_samples,最后把标签类和原先的轨迹拼接起来,相当于给原先的每一个轨迹点打一个类别标签,聚类后,可以只提炼出每一类的经纬度中位数进行可视化,即用一个点来代表这一簇,效果会显得更加稀疏明显

聚类簇

参考资料

1,经纬度坐标小数位与精度的对应关系
https://blog.csdn.net/lang_niu/article/details/123550453

2,基于DBSCAN算法的营运车辆超速点聚类分析
https://max.book118.com/html/2018/0407/160435287.shtm

http://www.mmbaike.com/news/46249.html

相关文章:

  • 昌平网站建设公司磁力狗bt
  • 高唐网站建设服务商渠道推广策略
  • 河北精品网站建设营业推广案例
  • 做网站页面的软件百度合作平台
  • b2c电子商务网站方案互联网营销策划
  • wordpress授权登录界面榆林百度seo
  • 深圳求做网站google seo 优化招聘
  • 做婚恋网站的开发网站建设公司简介
  • 网站建设费怎么做会计分录电脑网页制作
  • 那家建设网站p2p公司最好?免费网站制作教程
  • 专业网站建设商家已备案域名30元
  • 智能网站建设设计产品推广方案怎么写
  • 网站推广推广百度seo排名优
  • wordpress 翻译语言包seo投放
  • 怎样做网站赚钱集团网站推广
  • 一级注册安全工程师网站搜索优化方法
  • sql注入网站源码搜索引擎排名规则
  • 中国建筑最新消息网络公司优化关键词
  • 互联网外包是什么意思seo视频教学网站
  • 丝芙兰网站做的好差手机百度2020最新版
  • 推广qq群的网站华为seo诊断及优化分析
  • 计算机网络网站seo友情链接
  • 如何重启网站服务器bing搜索 国内版
  • 小米产品发布惠州seo推广外包
  • 张店学校网站建设哪家好网店推广策略
  • 教师可以做网站吗会计培训班需要学多长时间
  • 天津网站建设排名b2b平台运营模式
  • 格尔木建设局网站重庆森林讲的什么内容
  • 做企业网站要不要我们自己提供网站相关的图片?电商网站建设制作
  • 网站建设服务优势品牌营销策划怎么写