当前位置: 首页 > news >正文

网站开发服务费合同范本廊坊seo推广公司

网站开发服务费合同范本,廊坊seo推广公司,宁波网络营销策划公司,老闵行在哪里一、Tensor概念 什么是张量? 张量是一个多维数组,它是标量、向量、矩阵的高维拓展 Tensor与Variable Variable是torch.autograd中的数据类型,主要用于封装Tensor,进行自动求导。 data: 被包装的Tensorgrad: data的梯度&…

一、Tensor概念

什么是张量?

张量是一个多维数组,它是标量、向量、矩阵的高维拓展
在这里插入图片描述

Tensor与Variable

Variable是torch.autograd中的数据类型,主要用于封装Tensor,进行自动求导。

  • data: 被包装的Tensor
  • grad: data的梯度(梦回数一
  • grad_fn: 创建Tensor的Function,是自动求导的关键
  • requires_grad: 指示是否需要梯度
  • is_leaf: 指示是否是叶子节点(张量)

在这里插入图片描述

Tensor

PyTorch 0.4.0版本开始,Variable已并入Tensor。

  • dtype: 张量的数据类型,例如torch.FloatTensor, torch.cuda.FloatTensor
  • shape: 张量的形状,例如 (64, 3, 224, 224)
  • device: 张量所在设备,GPU/CPU,是加速的关键
    在这里插入图片描述

在这里插入图片描述

二、 Create Tensor

1、直接创建

torch.tensor(data,dtype=None,device=None,requires_grad=False,pin_memory=False
)

功能:从data创建tensor

• data: 数据, 可以是list, numpy
• dtype : 数据类型,默认与data的一致
• device : 所在设备, cuda/cpu
• requires_grad:是否需要梯度
• pin_memory:是否存于锁页内存

torch.from_numpy(ndarray)
功能:从numpy创建tensor。
注意事项:从torch.from_numpy创建的 tensor 与原始 ndarray 共享内存。
当修改其中一个的数据时,另一个也会被改动。

在这里插入图片描述

2、依据数值创建

torch.zeros(*size,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

功能:依照size创建全0张量

• size: 张量的形状, 如(3, 3)、(3, 224,224)
• out : 输出的张量
• layout : 内存中布局形式, 有strided,sparse_coo等
• device : 所在设备, gpu/cpu
• requires_grad:是否需要梯度

torch.zeros_like(input,dtype=None,layout=None,device=None,requires_grad=False
)

功能:依照 input 形状创建全0张量

参数说明:

  • input: 作为模板的输入张量,新创建的张量将具有与此张量相同的形状和数据类型。
  • dtype(可选): 新创建张量的数据类型,默认为 None(即与输入张量相同)。
  • layout(可选): 新创建张量的布局,默认为 None(即与输入张量相同)。
  • device(可选): 新创建张量所在设备,默认为 None(即与输入张量相同)。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。
torch.ones(*size,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • *size: 张量的形状,可以是一个数字或一个元组,用来指定张量每个维度的大小。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。
torch.ones_like(input,dtype=None,layout=None,device=None,requires_grad=False
)

参数说明:

  • input: 作为模板的输入张量,新创建的张量将具有与此张量相同的形状和数据类型。
  • dtype(可选): 新创建张量的数据类型,默认为 None,即与输入张量相同。
  • layout(可选): 新创建张量的布局,默认为 None,即与输入张量相同。
  • device(可选): 新创建张量所在设备,默认为 None,即与输入张量相同。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。
  • torch.ones() 用于创建所有元素值为1的张量,而 torch.ones_like() 则创建与输入张量形状相同的张量,但所有元素的值都为1。这两个函数都可以选择性地指定数据类型、布局、设备和是否需要计算梯度。
torch.full(size,fill_value,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • size: 张量的形状,可以是一个数字或一个元组,用来指定张量每个维度的大小。
  • fill_value: 填充张量的值,可以是标量或与指定数据类型相同的张量。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数用于创建指定形状并用指定值填充的张量。填充值可以是一个标量或与指定数据类型相同的张量。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

torch.arange(start=0,end,step=1,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • start: 序列起始值,默认为 0。
  • end: 序列结束值(不包含),创建的序列不包含该值。
  • step: 序列中相邻值之间的步长,默认为 1。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数用于创建一个从 start 到 end(不包含 end)的数值序列,并以 step 为步长。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

torch.linspace(start,end,steps=100,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • start: 序列起始值。
  • end: 序列结束值。
  • steps: 序列中的元素数量,默认为 100。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数创建一个在指定范围内(从 start 到 end)以均匀间隔的方式生成的数值序列,并且序列的元素数量由 steps 参数指定。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

torch.logspace(start,end,steps=100,base=10.0,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • start: 序列起始值的指数。
  • end: 序列结束值的指数。
  • steps: 序列中的元素数量,默认为 100。
  • base: 序列中的数值以此为底进行指数计算,默认为 10.0。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数创建一个在对数刻度上以均匀间隔分布的数值序列,start 和 end 参数指定序列起始值和结束值的指数,base 参数确定对数的底。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

torch.eye(n,m=None,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • n: 矩阵的行数。
  • m(可选): 矩阵的列数,默认为 None,如果为 None,则创建的是 n x n 的方阵。
  • out(可选): 输出张量。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数可以创建一个单位矩阵。如果提供了 m 参数,则创建的是一个 n x m 的矩阵,否则创建的是 n x n 的方阵。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

3、依概率分布创建张量

torch.normal(mean,std,out=None
)

torch.normal() 是 PyTorch 中用于生成服从指定均值和标准差的正态分布随机数的函数。以下是该函数的参数说明:

  • mean: 正态分布的均值。
  • std: 正态分布的标准差。
  • out(可选): 输出张量,用于保存生成的随机数。
torch.normal(mean,std,out=None
)

用于生成服从指定均值和标准差的正态分布随机数。

  • mean: 正态分布的均值。
  • std: 正态分布的标准差。
  • out(可选): 输出张量,用于保存生成的随机数。
torch.normal(mean,std,size,out=None
)
  • mean: 正态分布的均值。
  • std: 正态分布的标准差。
  • size: 生成张量的形状。
  • out(可选): 输出张量,用于保存生成的随机数。

四种模式:
mean为标量,std为标量
mean为标量,std为张量
mean为张量,std为标量
mean为张量,std为张量

这个函数与前一个函数类似,但是多了一个 size 参数,用于指定生成张量的形状。返回一个形状为 size 的张量,其中的元素服从均值为 mean、标准差为 std 的正态分布。可以选择性地提供一个输出张量 out 用于保存生成的随机数。

torch.randn(*size,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)

torch.rand() 是 PyTorch 中用于生成服从标准正态分布(均值为0,标准差为1)的随机数的函数。以下是该函数的参数说明:

torch.rand(*size,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)
  • *size: 张量的形状,可以是一个数字或一个元组,用来指定张量每个维度的大小。
  • out(可选): 输出张量,用于保存生成的随机数。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数返回一个张量,其中的元素是在区间 [0, 1) 上均匀分布的随机数,形状由参数 *size 指定。可以选择性地指定数据类型、布局、设备和是否需要计算梯度。

torch.randint(low=0,high,size,out=None,dtype=None,layout=torch.strided,device=None,requires_grad=False
)
  • low: 区间的下界(包含在内)。
  • high: 区间的上界(不包含在内)。
  • size: 生成张量的形状。
  • out(可选): 输出张量,用于保存生成的随机整数。
  • dtype(可选): 张量的数据类型,默认为 None,即自动推断。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数返回一个张量,其中的元素是在区间 [low, high) 上均匀分布的随机整数,形状由参数 size 指定。

这个函数用于生成随机排列和按照伯努利分布生成随机二元数。

torch.randperm(n,out=None,dtype=torch.int64,layout=torch.strided,device=None,requires_grad=False
)

参数说明:

  • n: 生成随机排列的长度。
  • out(可选): 输出张量,用于保存生成的随机排列。
  • dtype(可选): 张量的数据类型,默认为 torch.int64。
  • layout(可选): 张量的布局,默认为 torch.strided。
  • device(可选): 张量所在设备,默认为 None,即 CPU。
  • requires_grad(可选): 是否需要计算梯度,默认为 False,即不需要计算梯度。

这个函数返回一个长度为 n 的张量,包含从 0 到 n-1 的随机排列整数。

torch.bernoulli(input,*,generator=None,out=None
)
  • input: 输入张量,用于指定伯努利分布的概率值。
  • generator(可选): 随机数生成器,默认为 None。
  • out(可选): 输出张量,用于保存生成的随机二元数。

这个函数返回一个张量,其中的元素按照输入张量中的概率值在伯努利分布上进行采样生成随机二元数(0 或 1)。

http://www.mmbaike.com/news/49035.html

相关文章:

  • 网站建设尺寸长春百度网站快速排名
  • 阿里云免费网站磁力神器
  • 西宁企业网站建设开发冯耀宗seo博客
  • 后台风格网站苏州百度推广代理商
  • 做品牌网站的代发推广百度首页包收录
  • 山东做网站靠谱的公司东莞网站排名推广
  • 长春专业网站建设模板代理竞价推广怎么样
  • 长沙营销型网站建设公司西安网站seo哪家公司好
  • 网站推广注意事项中小企业管理培训课程
  • 做网站必须要注册公司么网站排名怎么优化
  • 爱做网站中国站长网站
  • 做网站的空间和服务器吗亚马逊跨境电商开店流程及费用
  • 专业的外贸网站建设怎么网络推广
  • 上海市建设安全协会网站查询系统瘫google下载官方版
  • 为什么不做网站做公众号爱站网站排名查询工具
  • 邯郸媒体网络营销诚信合作seo点击排名器
  • 滨江做网站域名查询注册商
  • 哈尔滨建站的网站推广平台 赚佣金
  • 做团购网站需要什么资质百度开户需要什么资质
  • 求个网站急急急个人网站设计方案
  • 做网站的重点目标网络营销推广的优势
  • 网站建设职能绩效目标网上怎么推销自己的产品
  • 网站建设 行业资讯互联网医疗的营销策略
  • wordpress改插件seo关键词优化提高网站排名
  • 禁止国内ip访问 网站石家庄百度快照优化
  • 自己做热图的网站在线bt种子
  • 网站首页布局的设计个人网站设计内容
  • 电商网站开发商简述网站建设的基本流程
  • 天猫网站做链接怎么做国外网站推广
  • 小说网站怎么做流量吗sem是什么显微镜