当前位置: 首页 > news >正文

南宁电子推广网站盘古百晋广告营销是干嘛

南宁电子推广网站,盘古百晋广告营销是干嘛,网站开发技术要学什么软件,家具网站案例前言 由于 Kafka 的写性能非常高&#xff0c;因此项目经常会碰到 Kafka 消息队列拥堵的情况。遇到这种情况&#xff0c;我们可以通过并发消费、批量消费的方法进行解决。 一、新建一个maven工程&#xff0c;添加kafka依赖 <dependency><groupId>org.springframe…

前言

由于 Kafka 的写性能非常高,因此项目经常会碰到 Kafka 消息队列拥堵的情况。遇到这种情况,我们可以通过并发消费、批量消费的方法进行解决。

一、新建一个maven工程,添加kafka依赖

<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId>
</dependency>

二、yaml配置文件

spring:kafka:bootstrap-servers: 127.0.0.1:9002producer:key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializerconsumer:group-id: test-consumer-group# 当 Broker 端没有 offset(如第一次消费或 offset 超过7天过期)时如何初始化 offset,当收到 OFFSET_OUT_OF_RANGE 错误时,如何重置 Offset# earliest:表示自动重置到 partition 的最小 offset# latest:默认为 latest,表示自动重置到 partition 的最大 offset# none:不自动进行 offset 重置,抛auto-offset-reset: latest# 是否在消费消息后将 offset 同步到 Broker,当 Consumer 失败后就能从 Broker 获取最新的 offsetenable-auto-commit: false## 当 auto.commit.enable=true 时,自动提交 Offset 的时间间隔,建议设置至少1000auto-commit-interval: 2000max-poll-records: 30heartbeat-interval: 3000key-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializerproperties:# 使用 Kafka 消费分组机制时,消费者超时时间。当 Broker 在该时间内没有收到消费者的心跳时,认为该消费者故障失败,Broker 发起重新 Rebalance 过程。目前该值的配置必须在 Broker 配置group.min.session.timeout.ms=6000和group.max.session.timeout.ms=300000 之间session.timeout.ms: 60000# 使用 Kafka 消费分组机制时,消费者发送心跳的间隔。这个值必须小于 session.timeout.ms,一般小于它的三分之一heartbeat.interval.ms: 3000# 使用 Kafka 消费分组机制时,再次调用 poll 允许的最大间隔。如果在该时间内没有再次调用 poll,则认为该消费者已经失败,Broker 会重新发起 Rebalance 把分配给它的 partition 分配给其他消费者max.poll.interval.ms: 300000request.timeout.ms: 600000listener:# 在侦听器容器中运行的线程数。concurrency: 2type: batchmax-poll-records: 50#当 auto.commit.enable 设置为false时,表示kafak的offset由customer手动维护,#spring-kafka提供了通过ackMode的值表示不同的手动提交方式#手动调用Acknowledgment.acknowledge()后立即提交ack-mode: manual_immediate# 消费者监听的topic不存在时,项目会报错,设置为falsemissing-topics-fatal: false

三、消息消费

手动提交非批量消费

  •   String 类型接入

     @KafkaListener(topics = {"test-topic"}, groupId = "test-consumer-group")public void onMessage(String message, Consumer consumer) {System.out.println("接收到的消息:" + message);consumer.commitSync();}

  • 使用注解方式获取消息头、消息体

         /*** 处理消息*/@KafkaListener(topics = "test-topic", groupId = "test-consumer-group")public void onMessage(@Payload String message,@Header(KafkaHeaders.RECEIVED_TOPIC) String topic,@Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,@Header(name = KafkaHeaders.RECEIVED_MESSAGE_KEY, required = false) String key,@Header(KafkaHeaders.RECEIVED_TIMESTAMP) long ts,Acknowledgment ack) {try {ack.acknowledge();log.info("Consumer>>>>>>>>>>>>>end");} catch (Exception e) {log.error("Consumer.onMessage#error . message={}", message, e);throw new BizException("事件消息消费失败", e);}} 

 

手动提交批量消费

想要批量消费,首先要开启批量消费,通过listener.type属性设置为batch即可开启,看下代码吧:

spring:kafka:consumer:group-id: test-consumer-groupbootstrap-servers: 127.0.0.1:9092max-poll-records: 50 # 一次 poll 最多返回的记录数listener:type: batch # 开启批量消费

 

如上设置了启用批量消费和批量消费每次最多消费记录数。这里设置 max-poll-records是50,并不是说如果没有达到50条消息,我们就一直等待。而是说一次poll最多返回的记录数为50

  • ConsumerRecord类接收
        /*** kafka的批量消费监听器*/@KafkaListener(topics = "test-topic", groupId = "test-consumer-group")public void onMessage(List<ConsumerRecord<String, String>> records, Consumer consumer) {try {log.info("Consumer.batch#size={}", records == null ? 0 : records.size());if (CollectionUtil.isEmpty(records)) {//分别是commitSync(同步提交)和commitAsync(异步提交)consumer.commitSync();return;}for (ConsumerRecord<String, String> record : records) {String message = record.value();if (StringUtils.isBlank(message)) {continue;}//处理业务数据//doBuiness();}consumer.commitSync();log.info("Consumer>>>>>>>>>>>>>end");} catch (Exception e) {log.error("Consumer.onMessage#error .", e);throw new BizException("事件消息消费失败", e);}}

  • String类接收
     @KafkaListener(topics = {"test-topic"}, groupId = "test-consumer-group")public void onMessage(List<String> message, Consumer consumer) {System.out.println("接收到的消息:" + message);consumer.commitSync();}

  • 使用注解方式获取消息头、消息体,则也是使用 List 来接收:

    @Component
    public class KafkaConsumer {// 消费监听@KafkaListener(topics = {"test-topic"})public void listen2(@Payload List<String> data,@Header(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,@Header(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,@Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<String> keys,@Header(KafkaHeaders.RECEIVED_TIMESTAMP) List<Long> tss) {System.out.println("收到"+ data.size() + "条消息:");System.out.println(data);System.out.println(topics);System.out.println(partitions);System.out.println(keys);System.out.println(tss);}
    }

  • 并发消费 

    再来看下并发消费,为了加快消费,我们可以提高并发数,比如下面配置我们将并发设置为 3。注意:并发量根据实际分区数决定,必须小于等于分区数,否则会有线程一直处于空闲状态

spring:kafka:consumer:group-id: test-consumer-groupbootstrap-servers: 127.0.0.1:9092max-poll-records: 50 # 一次 poll 最多返回的记录数listener:type: batch # 开启批量监听concurrency: 3 # 设置并发数

 

我们设置concurrency为3,也就是将会启动3条线程进行监听,而要监听的topic有5个partition,意味着将有2条线程都是分配到2个partition,还有1条线程分配到1个partition

配置类方式

通过自定义配置类的方式也是可以的,但是相对yml配置来说还是有点麻烦的(不提倡)

/*** 消费者配置*/
@Configuration
public class KafkaConsumerConfig {/*** 消费者配置* @return*/public Map<String,Object> consumerConfigs(){Map<String,Object> props = new HashMap<>();props.put(ConsumerConfig.GROUP_ID_CONFIG, "test-consumer-group");props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "127.0.0.1:9002");props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 50);props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);return props;}@Beanpublic KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, Object>> batchFactory() {ConcurrentKafkaListenerContainerFactory<String, Object> factory = new ConcurrentKafkaListenerContainerFactory<>();factory.setConsumerFactory(new DefaultKafkaConsumerFactory<>(consumerConfigs()));//并发数量factory.setConcurrency(3);//开启批量监听factory.setBatchListener(true);return factory;}
}

同时监听器通过@KafkaListener注解的containerFactory 配置指定批量消费的工厂即可,如下:

同时监听器通过@KafkaListener注解的containerFactory 配置指定批量消费的工厂即可,如下:

四、Kafka参数调优

一、Consumer参数说明


1、enable.auto.commit

该属性指定了消费者是否自动提交偏移量,默认值是true。
为了尽量避免出现重复数据(假如,某个消费者poll消息后,应用正在处理消息,在3秒后kafka进行了重平衡,那么由于没有更新位移导致重平衡后这部分消息重复消费)和数据丢失,可以把它设为 false,由自己控制何时提交偏移量。
如果把它设为true,还可以通过配置 auto.commit.interval.ms 属性来控制提交的频率。
 

2、auto.commit.interval.ms
自动提交间隔。范围:[0,Integer.MAX],默认值是 5000 (5 s)

3、手动提交:commitSync/commitAsync
手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。

相同点:都会将本次poll的一批数据最大的偏移量提交。
不同点:commitSync会阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而commitAsync则没有失败重试机制,故有可能提交失败,导致重复消费。

4、max.poll.records
Consumer每次调用poll()时取到的records的最大数。


二、Kafka消息积压、消费能力不足怎么解决?

如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,同时相应的增加消费者实例,消费者数=分区数(二者缺一不可)。
如果是下游的数据处理不及时,则可以提高每批次拉取的数量,通过max.poll.records这个参数可以调整。
单个消费者实例的消费能力提升,可以用多线程/线程池的方式并发消费提高单机的消费能力。


三、Kafka消费者如何进行流控?

将自动提交改成手动提交(enable.auto.commit=false),每次消费完再手动异步提交offset,之后消费者再去Broker拉取新消息,这样可以做到按照消费能力拉取消息,减轻消费者的压力。
 

http://www.mmbaike.com/news/54884.html

相关文章:

  • 广东网站建设服务怎么做品牌推广和宣传
  • 湖南建设信誉查询网站广告公司
  • 企业如何注册自己的网站兰州seo优化
  • 小型购物网站模板直通车推广技巧
  • ps做网站导航营销策划公司经营范围
  • wordpress主题阿里百上海优化营商环境
  • 做电脑网站与手机上的一样吗怎么样进行网络推广
  • 网站有没有做301百度推广开户代理
  • p2p网站制作郑州搜索引擎优化的概念
  • 用腾讯云做网站网络营销策划书模板
  • 做网站的 深圳百度推广怎么登陆
  • pc端微信端网站建设临沂百度推广多少钱
  • 临沧网站建设大数据分析营销平台
  • 河东做网站5000元网站seo推广
  • 工业设计网站设计世界杯竞猜
  • 房地产最新消息房价会涨吗重庆二级站seo整站优化排名
  • ssh做电商 网站中国新闻发布
  • app取代网站百度官网首页入口
  • 成都网站制作公司dedecms百度app下载安装
  • 网站是否必须做认证网页设计模板免费网站
  • 欧卡乐网站建设seo推广培训资料
  • 帝国cms 调用网站名称成都十大营销策划公司
  • 做订阅号要建立网站吗北京疫情最新情况
  • 网页网站怎么做的吗工具大全
  • 公司网站域名cn和com视频广告接单平台
  • 华为官方商城网站建设方案广西seo快速排名
  • 企业网站开发知名品牌有哪些南京百度推广优化排名
  • 中国建设银行官网网站首页短视频seo推广
  • 杭州临平网站建设seo课程排行榜
  • 丹东市住房和城乡建设委员会网站百度贴吧官网首页