当前位置: 首页 > news >正文

如何进行网站改版设计2345网址导航怎么样

如何进行网站改版设计,2345网址导航怎么样,网站创意文案怎么做,西安学校网站建设价格目录 前言 一、实测 1、整数规划问题 2、非线性规划问题 二、代码正确性验证 1、整数规划问题代码验证 2、非线性规划问题代码验证 三、结果正确性验证 1、整数规划问题结果正确性验证 2、非线性规划问题正确性验证 四、整数规划问题示例 后记 前言 模型&#xff…

目录

前言

一、实测

1、整数规划问题

2、非线性规划问题

二、代码正确性验证

1、整数规划问题代码验证

2、非线性规划问题代码验证

三、结果正确性验证

1、整数规划问题结果正确性验证

2、非线性规划问题正确性验证

四、整数规划问题示例

后记


前言

模型:使用ollama部署的deepseek-r1:14b。

一、实测

直接问:规划求解python代码

回答:它给出了两份代码,一个适用于整数规划问题,一个适用于非线性规划。

1、整数规划问题

from pulp import *# 创建问题
prob = LpProblem('example', LpMaximize)# 定义变量
x1 = LpVariable('x1', 0, None, Integer)
x2 = LpVariable('x2', 0, None, Integer)# 定义目标函数
prob += 3 * x1 + 2 * x2# 定义约束条件
prob += x1 + x2 <= 4
prob += 2 * x1 + x2 <= 6# 求解问题
prob.solve()# 输出结果
print("状态:", prob.status)
print(f"x1 = {x1.value}")
print(f"x2 = {x2.value}")
print(f"目标函数值 = {value(prob.objective)}")

2、非线性规划问题

from scipy.optimize import minimize# 目标函数
def objective(x):return x[0]**2 + x[1]**2# 约束条件
constraints = [{'type': 'ineq', 'fun': lambda x: 4 - (x[0] + x[1])},  # x1 + x2 <= 4{'type': 'ineq', 'fun': lambda x: 6 - (2*x[0] + x[1])}   # 2x1 + x2 <= 6
]# 初始猜测值
x0 = [0, 0]# 使用SLSQP方法求解
result = minimize(objective, x0, method='SLSQP', constraints=constraints)if result.success:print("结果:")print(f"x1 = {result.x[0]:.2f}")print(f"x2 = {result.x[1]:.2f}")print(f"目标函数值 = {result.fun}")
else:print("无解或问题未定义。")

二、代码正确性验证

1、整数规划问题代码验证

直接报错……

问题:LpVariable方法的第四个参数有问题。

# 定义变量
x1 = LpVariable('x1', 0, None, Integer)
x2 = LpVariable('x2', 0, None, Integer)

改为:

# 定义变量
x1 = LpVariable('x1', 0, None, "Integer")
x2 = LpVariable('x2', 0, None, "Integer")

或者改为这个也行:

# 定义变量
x1 = LpVariable('x1', 0, None, LpInteger)
x2 = LpVariable('x2', 0, None, LpInteger)

修改完就正常运行了。

2、非线性规划问题代码验证

第二份代码就正常运行了。

三、结果正确性验证

1、整数规划问题结果正确性验证

显然,一眼就看出来了,它结果有问题,x1和x2应为具体的数值。

问题:

print(f"x1 = {x1.value}")
print(f"x2 = {x2.value}")

在源码中找到一个比较可疑的变量名,试试看。

修改:

print(f"x1 = {x1.varValue}")
print(f"x2 = {x2.varValue}")

结果:

那么这个结果是否正确呢?还需进一步验证

问题转换:

设:x = x1,y = x2(为方便查看)

限制条件:

① x ≥ 0,且为整数

② y ≥ 0,且为整数

③ x + y ≤ 4

④ 2x + y ≤ 6

求:当x和y取何值时,3x + 2y取最大值(创建问题时使用的是LpMaximize,即求最大值)

解:直接上图

正确答案为:x = 2,y = 2,目标函数最大值为10。

结果正确。

2、非线性规划问题正确性验证

问题转换:

设:x = x1,y = x2(为方便查看)

限制条件:

① x ≥ 0(因初始猜测值的是x0 = [0, 0])

② y ≥ 0(因初始猜测值的是x0 = [0, 0])

③ x + y ≤ 4

④ 2x + y ≤ 6

求:当x和y取何值时,x² + y²取最小值(使用的是SciPy库中的optimize中的minimize)

解:直接上图

根据条件可知,x和y的取值范围在四边形ABCD的范围内,很容易得出当x = 0,y = 0时,x² + y²的最小值为0。

结果正确。

四、整数规划问题示例

from pulp import *
'''
物品A 6.85元/个
物品B 5.28元/个
物品C 2.3元/个
总价=90.56元
求A、B、C分别买了几个
'''arr = [6.85, 5.28, 2.3]
total = 90.56# 创建问题实例
prob = LpProblem("example", LpMaximize)# 定义决策变量(整数)
n = len(arr)
variables = [LpVariable(f'x{i+1}', 0, None, LpInteger) for i in range(n)]# 定义约束条件
prob += lpSum([arr[i] * variables[i] for i in range(n)]) == total# 求解问题
prob.solve()# 输出结果
print("Status:", prob.status)
for i in range(n):print(f"x{i+1} = {variables[i].value()}")'''
结果
Status: 1
x1 = 10.0
x2 = 2.0
x3 = 5.0
'''
from pulp import *
'''
假设有三种产品,每种产品的单位利润分别为 [3, 5, 4] 元,
而生产每个产品需要消耗的资源为 [2, 4, 3] 单位,
总共有 100 单位的资源可用。
目标是确定每种产品的生产数量,以使总利润最大化。
'''# 输入数据
profits = [3, 5, 4]    # 利润数组
resource_usage = [2, 4, 3]  # 资源消耗数组
total_resource = 100     # 总资源可用量# 创建问题实例
prob = LpProblem("Maximize_Profits", LpMaximize)# 定义决策变量(整数)
n = len(profits)
variables = [LpVariable(f'x{i+1}', 0, None, LpInteger) for i in range(n)]# 定义目标函数:最大化总利润
prob += lpSum([profits[i] * variables[i] for i in range(n)]), "Maximize Profits"# 添加约束条件:资源限制
prob += lpSum([resource_usage[i] * variables[i] for i in range(n)]) <= total_resource, "Total Resource Constraint"# 求解问题
prob.solve()# 输出结果
print("Status:", prob.status)
for i in range(n):print(f"x{i+1} = {variables[i].value()}")
print("Maximized Profit =", value(prob.objective))'''
结果:
Status: 1
x1 = 50.0
x2 = 0.0
x3 = 0.0
Maximized Profit = 150.0
'''

后记

后面又测试了几次,有时候它给出的代码可以直接运行,有时候又有问题

http://www.mmbaike.com/news/56308.html

相关文章:

  • 解决方案企业网站怎样去推广自己的网店
  • 西安网站制作培训福州百度推广开户
  • 保障性住房建设投资中心网站如何做网站优化seo
  • wordpress 表单 验证码长沙网站seo优化公司
  • 创立外包网站seo百度关键字优化
  • 石家庄建设局网站怎么打不开站优化
  • 模板网站有什么不好官网seo怎么做
  • 浙江省建设监理协会官方网站网络推广引流有哪些渠道
  • Php做网站要求类似互推商盟的推广平台
  • 网站建设的步骤教程视频教程地推团队如何收费
  • 定时切换照片wordpress西安关键词优化平台
  • 东莞市万江疫情最新消息网站排名优化制作
  • 微信做淘宝客网站网站排名掉了怎么恢复
  • 家居企业网站建设报价合肥网站优化方案
  • 如何做好网站seo优化网站流量指标有哪些
  • 成都上市的网站建设公司鞍山做网站的公司
  • 整站优化关键词推广自助搭建平台
  • 赌博网站开发公司搜索引擎营销优化
  • wordpress 第一张图片 get first福州seo结算
  • java 做直播网站有哪些软件有哪些seo域名综合查询
  • 软件工程师资格证旺道seo工具
  • 如何做网站推广方案网络推广营销方案100例
  • 南宁微信网站制作外贸快车
  • wordpress支持什么语言宁波seo网络推广软件系统
  • 直接访问网页seo排名快速优化
  • 合肥百度团购网站建设什么叫做优化
  • 企云网站建设爱上链外链购买交易
  • 贵州新闻北京seo公司排名
  • 加盟合作招商百度seo公司哪家强一点
  • wordpress怎么设置后台权限谷歌seo优化排名