当前位置: 首页 > news >正文

南阳卧龙区高端网站建设价格网络营销技巧培训

南阳卧龙区高端网站建设价格,网络营销技巧培训,wordpress分享文章插件,装潢设计怎么样CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比 目录 CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于CPO-CNN-GRU-Attention、…

CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比

目录

    • CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基于CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测一键对比(仅运行一个main即可)

Matlab代码,每个模型的预测结果和组合对比结果都有!
1.无需繁琐步骤,只需要运行一个main即可一键出所有图像。
2.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!
3.CPO优化参数为:隐藏层节点数,学习率,正则化系数
4.CPO作为24年新算法,冠豪猪优化器(Crested Porcupine Optimizer,CPO)。该成果于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。
运行环境要求MATLAB版本为2023b及其以上
评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多
代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白

程序设计

  • 完整代码私信回复CPO-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CPO-CNN-BiLSTM、CNN-BiLSTM四模型对比多变量时序预测
%%  CSDN:机器学习之心
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('数据集.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...(kim + zim) * nim), result(i + kim + zim - 1, end)];
end%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到01之间
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';%%  数据格式转换
for i = 1 : MLp_train{i, 1} = p_train(:, :, 1, i);
endfor i = 1 : NLp_test{i, 1}  = p_test( :, :, 1, i);
end%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([f_, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[f_, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]32个特征图reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(1, "Name", "fc")                             % 全连接层regressionLayer("Name", "regressionoutput")];                    % 回归层

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.mmbaike.com/news/57190.html

相关文章:

  • 关于网页制作合肥网站seo推广
  • 做区块链在哪个网站页面优化的方法有哪些
  • 做电商什么外推网站好小红书seo是什么
  • 开网站成本网络视频营销的案例
  • wordpress $url_array北京知名seo公司精准互联
  • 社群营销与运营福州网站seo优化公司
  • 兰州企业做网站游戏推广员每天做什么
  • 用sublime text做网站网络推广策划方案怎么写
  • 网站开发 培训东莞网站建设优化诊断
  • 国内网站开发公司代运营竞价公司
  • 合肥做淘宝网站建设百度推广登录平台官网
  • 明星静态网站百度投诉中心24人工 客服电话
  • 动态网站建设实训实训心得品牌宣传策划公司
  • cms建站步骤房地产网站建设
  • 海南省建设监理协会网站哈尔滨优化推广公司
  • 产品经理如何做p2p网站改版开发制作app软件
  • 企业网站名备案营销文案
  • 二级域名站群网站seo推广优化教程
  • 做网站树立品牌形象谷歌关键词搜索
  • 网站建设策划书选题高质量外链购买
  • 哪个网站做免费广告好企业员工培训总结
  • 专业网站建设专家今日军事头条
  • 做百度联盟用什么做网站含有友情链接的网页
  • 成都到西安动车合肥网站优化seo
  • 食品网站设计方案怎么开通网站
  • 刷赞网站怎么做关键词推广优化排名如何
  • 合肥做网站好的公司哪家好怎么做百度推广的代理
  • 湛江今天发生的重大新闻seo手机端排名软件
  • 做编辑器的网站通过qq群可以进行友情链接交换
  • 淘宝网站建设教程视频长沙优化科技有限公司