当前位置: 首页 > news >正文

深圳市专业做网站北京seo优化

深圳市专业做网站,北京seo优化,magento wordpress,网络推广做哪个网站比较好决策树是一种由算法自动设计的模型。在机器学习中,构建决策树的过程通常遵循以下步骤: 特征选择:算法会评估每个特征,并选择一个特征作为节点分裂的依据。这个选择基于某种准则,如信息增益(ID3算法&#xf…

决策树是一种由算法自动设计的模型。在机器学习中,构建决策树的过程通常遵循以下步骤:

  1. 特征选择:算法会评估每个特征,并选择一个特征作为节点分裂的依据。这个选择基于某种准则,如信息增益(ID3算法)或Gini不纯度(CART算法)。

  2. 最佳分裂点确定:算法会计算每个特征的所有可能分裂点,并选择一个使得不纯度最小(或信息增益最大)的分裂点。

  3. 递归分裂:在选择了特征和分裂点后,算法会递归地对数据集的每个子集重复上述过程,直到满足停止条件。

  4. 停止条件:停止条件可以是多种因素,例如:

    • 数据集的不纯度低于某个阈值。
    • 达到预设的最大树深度。
    • 节点中的样本数量低于某个阈值。
    • 没有更多的特征可以用来分裂。
  5. 剪枝:为了防止过拟合,算法可能会采用剪枝技术来减少树的复杂度。这包括预剪枝(在生长过程中限制树的大小)和后剪枝(先生长整棵树,然后从底部剪除不必要的分支)。

  6. 输出模型:最终,算法会输出一个决策树模型,该模型可以通过一系列的问题(特征和分裂点)来对新的数据点进行分类。

首先导入库和数据,分割数据集,创建 DecisionTreeClassifier 的实例并使用训练集数据对其进行训练。预测分数

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets
import graphviz
from sklearn.model_selection import train_test_split
from sklearn import treeiris = datasets.load_iris()
X = iris['data']
y = iris['target']feature_names = iris['feature_names']X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state =256)model = DecisionTreeClassifier()
model.fit(X_train,y_train)print('测试数据得分',model.score(X_test,y_test))print('算法预测结果',model.predict(X_test))
print('真实结果    ',y_test)

#逻辑斯蒂回归中,手动计算过概率
model.predict_proba(X_test)

构建决策树

dot_data = tree.export_graphviz(model,filled=True,rounded=True,feature_names=feature_names)graphviz.Source(dot_data)

我们可以分析出构建的决策树使用了以下特征和策略:

  1. 特征选择:决策树使用了鸢尾花数据集中的以下特征:

    • petal length (cm):花瓣长度
    • petal width (cm):花瓣宽度
    • sepal width (cm):萼片宽度
  2. 分裂准则:决策树的每个节点都基于某个特征的阈值进行分裂,例如 "petal length (cm) <= 2.45" 表示如果花瓣长度小于或等于2.45厘米,则按照这个条件进行数据的分裂。

  3. Gini不纯度:每个节点都显示了Gini不纯度值,这是衡量数据集纯度的指标。Gini不纯度越低,表示数据集的纯度越高。例如,一个节点显示 "gini = 0.666" 表示该节点的不纯度较高,而 "gini = 0.0" 表示该节点的样本全部属于同一类别。

  4. 样本数量:每个节点都显示了该节点下的样本数量,例如 "samples = 120" 表示该节点下有120个样本。

  5. 类别分布:每个节点都显示了该节点下各个类别的样本数量,例如 "value = [39, 39, 42]" 表示该节点下有39个样本属于第一类,39个样本属于第二类,42个样本属于第三类。

  6. 递归分裂:决策树通过递归的方式进行分裂,直到满足停止条件,例如Gini不纯度降至0(所有样本属于同一类别)或者达到预设的最大深度。

  7. 停止条件:当一个节点的Gini不纯度降至0,或者样本数量很少时,分裂会停止。例如,"gini = 0.0" 表示该节点下的所有样本都属于同一类别,不需要进一步分裂。

  8. 特征重要性:从截图中可以看出,花瓣长度和宽度的特征在多个节点中被用作分裂准则,这表明这些特征对于分类可能更为重要。

  9. 树的深度:从截图中可以看出,树的深度相对较浅,这意味着模型可能没有过拟合,但也可能没有捕捉到数据的所有特征。

  10. 预测结果:最终,每个叶节点都会给出一个预测结果,通常是多数投票的结果。

http://www.mmbaike.com/news/64106.html

相关文章:

  • 江阴市住房和城乡建设局网站dw网页制作教程
  • 长春电商网站建设价格安徽网络建站
  • 福建建设厅网站工程履约保险培训心得体会感悟
  • 甘肃省安装建设集团公司网站外链发布平台有哪些
  • 合肥企业建站系统企业网站seo优化公司
  • 婚礼策划网站设计推文关键词生成器
  • 舌尖上的西安 网站怎么做链接推广
  • 如何创新网站建设模式平谷头条新闻
  • 网站登录界面图片用什么软件做网站搭建关键词排名
  • 1688是b2b吗seo建站平台哪家好
  • web程序设计asp.net实用网站开发 pdf搜索引擎广告图片
  • 谁做网站做的比较可信公司推广网站
  • 烟台网站建设科技公司电商平台网站
  • 建立网站需要什么硬件如何制作链接推广
  • 日本做a爱片网站淮南网站seo
  • 宝鸡做网站的公司海南百度推广运营中心
  • 网站开发有哪几类国外网络推广
  • 网站建设你的选择微信朋友圈广告
  • 厦门网站建设哪家专业最新营销模式有哪些
  • 苏州吴江太湖新城建设局网站长沙网红奶茶
  • 聊城集团网站建设价格网络推广公司加盟
  • 驾校做网站巨量引擎app
  • iis网站配置 无法浏览seo关键词排名优化官网
  • 新时代推进政府网站集约化建设网页推广怎么做
  • 五台县建设局网站哈尔滨seo推广优化
  • 有哪些网站可以做推广最近重大新闻头条
  • 网站更换ico文件位置抖音seo排名优化软件
  • 微信网站制作设计方案广东省自然资源厅
  • mvc做网站前台代码群排名优化软件
  • 软件技术专业毕业论文怎么优化百度关键词