个人网站也要备案吗seo营销专员
一、算法好坏的度量
【事前分析法】
算法设计好后,根据算法的设计原理,只要问题规模确定,算法中基本语句执⾏次数和需求资源个数
基本也就确定了。
⽐如求1 + 2 + 3 + ... + n − 1 + n ,可以设计三种算法:
算法A:需要开辟⼀个⼤⼩为N 的空间。
const int N = 1e5 + 10;
int a[N];
int sum(int n)
{// 先把 1 ~ n 存起来 for(int i = 1; i <= n; i++){a[i] = i;}// 循环逐个数字相加 int ret = 0;for(int i = 1; i <= n; i++){ret += a[i];}return ret;
}
算法B:不需要开辟空间,直接求和。需要循环n 次,ret + = n 语句会执⾏n 次,⽽且随着问题规模的增⻓,执⾏次数也会增⻓。
int sum(int n)
{// 循环逐个数字相加 int ret = 0;for (int i = 1; i <= n;
i++) {ret += i;}return ret;
}
算法C:不论问题规模为多少, 语句只会执⾏1 次。
int sum(int n)
{// 利⽤求和公式 return (1 + n) * n / 2;
}
综上所述,时间和空间的消耗情况就是我们度量⼀个算法好坏的标准,也就是时间复杂度和空间复杂度。
二、时间复杂度
时间复杂度
在计算机科学中,算法的时间复杂度是⼀个函数式 ,它定量描述了该算法的运⾏时间。这个函数式计算了程序中语句的执⾏次数。
案例:计算⼀下fun中++count语句总共执⾏了多少次?
void fun(int N)
{ int count = 0; for(int i = 0; i < N; i++) { for(int j = 0; j < N; j++) { ++count; // 执⾏次数是 n*n,也就是 n^2 } } for(int k = 0; k < 2 * N; k++) {++count; // 执⾏次数是 2*n } int M = 10; while(M--) { ++count; // 执⾏次数 10 }
}
fun 函数++count 语句的总执⾏次数:
T (N) = N +
2 2 × N + 10
• 当N = 10 时,T (N) = 100 + 20 + 10 = 130
• 当N = 100 时,T (N) = 10000 + 200 + 10 = 10210
• 当N = 1000 时,T (N) = 1000000 + 2000 + 10 = 1002010
• 当N = 10000 时,T (N) = 100000000 + 20000 + 10 = 100020010
推导⼤O渐进时间复杂度的规则:
1. 时间复杂度函数式T (N)中,只保留最⾼阶项,去掉那些低阶项;
2. 如果最⾼阶项存在且不是1 ,则去除这个项⽬的常数系数;
3. T (N)中如果没有N 相关的项⽬,只有常数项,⽤常数1 取代所有加法常数。
相关案例:
void func1(int N)
{int count = 0;for(int k = 0; k < 2 * N; k++){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}
基本语句++count 关于问题规模n 总执⾏次数的数学表达式为:f(n) = n × 2 + 10 ;
保留最⾼阶项,省略最⾼阶项的系数后的⼤O渐进表⽰法为:O(n) 。
void func5(int n)
{int cnt = 1;while (cnt < n){cnt *= 2;}
}
// ⽤递归计算 N 的阶乘
long long fac(int N)
{if(N == 0) return 1;return fac(N - 1) * N;
}
递归算法时间复杂度求解⽅式为,单次递归时间×总的递归次数。
注意,这⾥只是简易的估算⽅式。递归算法的时间复杂度严谨的计算⽅法是利⽤主定理(Master
Theorem)来求得递归算法的时间复杂度。
但是,我们往后学习更加深⼊会发现,⼤多是情况下,我们并不需要计算出准确⽆误的时间复杂度,
只需要根据做题经验,简单估算⼀下即可。所以,这⾥为了不增加⼤家负担,对于递归算法,我们仅
需掌握这样简易的计算⽅式即可。
单次递归没有循环之类,所以时间复杂度为常数。总的递归次数就是递归过程中, 递归调⽤了多
少次。
F ac
F ac(5) 需要递归6 次,则F ac(n)就需要递归n + 1 次,故递归求阶乘的时间复杂度为O(n) 。