当前位置: 首页 > news >正文

做网站的步骤 主题沈阳百度推广排名优化

做网站的步骤 主题,沈阳百度推广排名优化,网络科技工作室经营范围,如何在木上做网站往期精彩内容: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 Python轴承故障诊断入门教学-CSDN博客 Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客 Python轴承故障诊断 (14)高创新故障识别模型-CSDN…

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断入门教学-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

基于k-NN + GCN的轴承故障诊断模型-CSDN博客

独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型-CSDN博客

故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

● 数据集:经测试,模型在CWRU西储大学轴承数据集 和 哈工大航天发动机轴承数据集上表现分类准确率 均为99%!

● 环境框架:python 3.9  pytorch 1.8 及其以上版本均可运行

● 准确率:测试集99%

● 使用对象:论文需求、毕业设计需求者

● 代码保证:代码注释详细、即拿即可跑通。

创新点:

分支一:轴承故障时序信号作为CNN模块输入,通过一系列的1D卷积层和池化层操作,实现对信号数据的时域和局部特征提取;

分之二:轴承故障信号先通过堆叠为2维矩阵,然后是利用通过2D的ResNet卷积层和残差块对数据进行全局特征提取;

并行融合:将1D CNN模块和2D ResNet模块的输出进行并行融合,以获得融合了时域和频域信息的特征表示。这些特征表示经过全连接层进行分类,最终得到故障诊断的结果。通过1D CNN和2D ResNet的并行处理,该模型能够综合利用时域和频域信息,从而提高故障诊断的准确性和鲁棒性,充分挖掘数据之间的关联性,提高了故障诊断的性能。

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现1DCNN-2DResNet并行模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集-CSDN博客

1 轴承故障数据的预处理

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

1.2 数据预处理,制作数据集

2 基于Pytorch的1DCNN-2DResNet的轴承故障诊断

2.1 定义1DCNN-2DResNet分类网络模型

2.2 设置参数,训练模型

50个epoch,准确率100%,用1DCNN-2DResNet并行网络分类效果显著,模型能够充分提取轴承故障信号的全局空间和局部特征,收敛速度快,性能优越,精度高,效果明显!

2.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#代码和数据集:https://mbd.pub/o/bread/ZpWakplp

http://www.mmbaike.com/news/64945.html

相关文章:

  • 做网站需要登录什么软件网络营销可以做什么工作
  • 做营销网站策划有什么前景品牌公关公司
  • 网站推广seo教程上海培训机构
  • 门头沟网站建设公司百度收录工具
  • 余姚网站建设公司产品营销推广
  • 提供网站建设公司哪家好怎么做优化
  • 专业做网站公司 前景如何进行线上推广
  • 做查询系统网站seo是什么部位
  • 织梦网站知名的建站公司
  • 名者观看网站站长之家论坛
  • 广告位石家庄百度seo代理
  • 做招聘网站怎么运作com域名多少钱一年
  • wordpress admin改名关键词搜索优化公司
  • 开发定制软件app需要多少钱整站seo教程
  • 太原商城网站建设黑帽seo排名技术
  • 做自我介绍的网站的图片素材免费建立个人网站申请
  • 滨江道做网站公司营销技巧有哪些
  • 漳州市网站建设公司百度百家号官网登录
  • 通用网址查询网站百度推广找谁做靠谱
  • 帮忙做快站旅游网站广告代发平台
  • 做app网站郑州本地seo顾问
  • ui做自适应网站大数据营销 全网推广
  • 重庆网站建设模板制作沈阳seo网站推广
  • 在线做头像的网站有哪些元搜索引擎有哪些
  • 江阴做网站优化西安网络优化大的公司
  • markdown可以用wordpressseo网站排名优化教程
  • 有什么网站可以做免费推广能打开各种网站的浏览器
  • jsp网站开发引用文献手机网站免费客服系统
  • 怎么做二手房网站湖南网络优化
  • asp 大型网站开发浙江seo