当前位置: 首页 > news >正文

网站设计欣赏中国网站开发一般多少钱

网站设计欣赏中国,网站开发一般多少钱,沈阳工伤保险做实在哪个网站,图书馆网站参考咨询建设当我们进行算法分析时,通常会忽略掉常数倍数的因子和低阶项,只考虑最高阶的项。这是因为在大规模问题下,较小的项和常数倍数的因子相对于最高阶的项来说变得可以忽略不计。 以下是一些常见的示例,说明了常数倍数的因子和高阶项对…

当我们进行算法分析时,通常会忽略掉常数倍数的因子和低阶项,只考虑最高阶的项。这是因为在大规模问题下,较小的项和常数倍数的因子相对于最高阶的项来说变得可以忽略不计。

以下是一些常见的示例,说明了常数倍数的因子和高阶项对算法的影响:

O(2n) 和 O(n):在 O(2n) 中,常数倍数因子为 2,而在 O(n) 中为 1。但是,当 n 变得非常大时,2n 和 n 之间的差距就变得微不足道,因此我们可以说 O(2n) 等价于 O(n)O(3n^2) 和 O(n^2):在 O(3n^2) 中,常数倍数因子为 3,而在 O(n^2) 中为 1。但是,当 n 变得非常大时,3n^2 和 n^2 之间的差距就变得微不足道,因此我们可以说 O(3n^2) 等价于 O(n^2)O(n^2 + n) 和 O(n^2):在 O(n^2 + n) 中,我们有两个项,分别是 n^2 和 n。然而,在大规模问题下,n 这样的低阶项可以被 n^2 这样的高阶项主导,因此我们可以忽略掉 n,即 O(n^2 + n) 等价于 O(n^2)O(n^3 + n^2) 和 O(n^3):在 O(n^3 + n^2) 中,我们有两个项,分别是 n^3 和 n^2。同样,在大规模问题下,n^2 这样的低阶项可以被 n^3 这样的高阶项主导,因此我们可以忽略掉 n^2,即 O(n^3 + n^2) 等价于 O(n^3)

通过忽略常数倍数的因子和低阶项,我们可以简化算法的复杂度表示,并更好地理解算法的增长趋势和相对性能。这种简化使得我们能够更容易地比较和分析不同算法之间的效率。

冒泡排序

基本的冒泡排序算法

    public static void bubbleSort(int[] arr) {int n = arr.length;for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// 交换arr[j]和arr[j+1]int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}

最坏时间复杂度是O(n^2)

即当输入的序列是降序排列时,每次比较都需要进行交换操作。在最坏情况下,共进行了(n-1)+(n-2)+…+2+1 = n*(n-1)/2次比较和交换,时间复杂度为O(n^2)

最好时间复杂度是O(n)

1、在最好的情况下,即当输入的序列已经是升序排列时,冒泡排序只需要进行一遍比较即可完成排序。
2、但是根据上面代码,无论输入序列是否有序,冒泡排序都将进行n*(n-1)/2次比较,时间复杂度为O(n^2)。
3、其实,最好情况下的时间复杂度O(n)通常是指在某些优化的冒泡排序算法中,如果发现某一轮比较中没有交换操作,就可以提前结束排序。

    /*** 改进版冒泡排序* @param arr*/public static void improvedBubbleSort(int[] arr) {int n = arr.length;boolean swapped;for (int i = 0; i < n - 1; i++) {swapped = false;for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {// 交换arr[j]和arr[j+1]int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;swapped = true;}}// 如果某轮比较没有发生交换,说明已经有序,提前结束排序if (!swapped) {break;}}}

選擇排序

快速排序

public class QuickSort {public static void main(String[] args) {int[] arr = {7, 2, 1, 6, 8, 5, 3, 4};quickSort(arr, 0, arr.length - 1);for (int num : arr) {System.out.print(num + " ");}}public static void quickSort(int[] arr, int low, int high) {if (low < high) {// 分区操作,将数组分为两部分,返回基准元素的索引int pivot = partition(arr, low, high);// 对左子数组进行快速排序quickSort(arr, low, pivot - 1);// 对右子数组进行快速排序quickSort(arr, pivot + 1, high);}}public static int partition(int[] arr, int low, int high) {// 选择最后一个元素作为基准int pivot = arr[high];// i 指向小于基准的元素的位置int i = low - 1;// 遍历数组,将小于基准的元素移动到基准的左边for (int j = low; j < high; j++) {if (arr[j] < pivot) {i++;swap(arr, i, j);}}// 将基准元素放到正确的位置上swap(arr, i + 1, high);// 返回基准元素的索引return i + 1;}public static void swap(int[] arr, int i, int j) {// 交换数组中两个元素的位置int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}
}

最好时间复杂度是O(nlogn)

快速排序的最好情况下,每次划分都能将待排序序列分成长度为 n/2 的两个子序列。假设递归树的深度为 d,初始时,序列的长度为 n。每次划分后,序列的长度变为原来的一半,即 n/2。那么经过 d 次划分后,序列的长度变为 n/(2^d)。当划分完毕后,序列的长度为 1。

所以我们有以下等式:n/(2^d) = 1
通过移项,可以得到:
n = 2^d
取以 2 为底的对数,我们得到:
d = log2(n)

此时递归树的深度为 log2n,每层的时间复杂度为O(n),因此最好情况下的时间复杂度为O(nlogn)

  • 在算法分析中,我们通常只关注时间复杂度的增长趋势,而不是具体的常数因子或底数。因此,在常见的情况下,会省略对数的底数,并将时间复杂度简化为O(n log n)。

  • 对数的底数对于增长趋势的影响较小。对于底数为2的对数(log2n)和底数为10的对数(log10n)来说,它们之间的差异只是一个常数因子,而不会改变时间复杂度的增长趋势。

  • 深度算法:

最坏时间复杂度是O(n^2)

快速排序的最坏情况下,每次划分都将待排序序列分为长度为 1 和 n-1 的两个子序列,此时递归树的深度为 n,每层的时间复杂度为O(n),因此最坏情况下的时间复杂度为O(n^2)

归并排序

希尔排序

http://www.mmbaike.com/news/65463.html

相关文章:

  • 深圳电子商务网站制作怎么优化推广自己的网站
  • 建设部网站官网 下载规范百度平台电话
  • 做网站实习日志seo优化sem推广
  • 石家庄桥西网站制作公司长沙优化网站厂家
  • 淘宝网网站设计分析制作小程序的软件
  • 口碑营销的定义seo关键词排名优化评价
  • dw 个人网站怎么做短视频剪辑培训班速成
  • 网站设计主要内容超级外链工具有用吗
  • wordpress文章模块化简述seo
  • 软件工程考研率为何低快速提升排名seo
  • 织梦cms仿网站教程今天的新闻是什么
  • 宁夏建设工程招标投标管理中心网站西安网站建设公司排名
  • 社区网站设计百度直播间
  • 全省政府网站建设工作会议百度一下网页版搜索引擎
  • 做非洲国际贸易网站快手推广网站
  • 网站建设的策划书排名第一的玉米品种
  • 广西住房和城乡建设厅官网桂建云seo投放
  • 中信云做网站东莞做网站哪家好
  • 自己做网站用软件外贸推广具体是做什么
  • 河南建设网站百度网盘登录
  • 优秀网站设计分析优化网站排名
  • 网站推广费用怎么做分录性价比高的seo网站优化
  • asp网站开发实训报告网络营销推广难做吗
  • 那个网站可以做空比特币sem优化服务公司
  • 青海网站建设软文营销的特点有哪些
  • 人民政府 网站建设seo网站优化培训怎么样
  • 做我女朋友的网站seo搜索优化软件
  • 湖南网站推广长沙seo关键词排名
  • 网上书店网站建设设计的收获广告推广软文案例
  • 适合国外网站的dns友情链接买卖代理