当前位置: 首页 > news >正文

服务周到的做网站网络软文推广平台

服务周到的做网站,网络软文推广平台,wordpress全景krpano,最近上海大事件OpenAi 环境安装 首先确保您的计算机上已经安装了 Python。您可以从 Python 官方网站下载并安装最新版本 Python。安装时,请确保勾选 “Add Python to PATH” (添加环境变量)选项,以便在 cmd 命令行中直接使用 Python。 安装 Op…

OpenAi 环境安装

首先确保您的计算机上已经安装了 Python。您可以从 Python 官方网站下载并安装最新版本 Python。安装时,请确保勾选 “Add Python to PATH” (添加环境变量)选项,以便在 cmd 命令行中直接使用 Python。

安装 OpenAI Python 库

打开命令行或终端窗口安装 OpenAI Python 库

pip install openai

OpenAi Platform 教程

平台官网:https://platform.openai.com/

在这里插入图片描述

http API 调用方式文档:https://platform.openai.com/docs/api-reference/introduction

文本生成 GPT-4

GPT-4 模型概述

GPT-4是一个大型多模态模型(接受文本或图像输入和输出文本),由于其更广泛的一般知识和先进的推理能力,它可以比我们以前的任何模型都更准确地解决难题。付费客户可以在OpenAI API中使用GPT-4。与gpt-3.5 turbo一样,GPT-4针对聊天功能进行了优化,但在使用聊天完井API的传统完井任务中表现良好。在我们的文本生成指南中学习如何使用GPT-4。

测试案例

聊天模型将消息列表作为输入,并返回模型生成的消息作为输出。虽然聊天格式的设计是为了使多回合的对话变得容易,但它对于没有任何对话的单回合任务同样有用。

一个聊天完成API调用的例子如下:

from openai import OpenAI
client = OpenAI()response = client.chat.completions.create(model="gpt-4",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Who won the world series in 2020?"},{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},{"role": "user", "content": "Where was it played?"}]
)print(response)

数据结构

{"choices": [{"finish_reason": "stop","index": 0,"message": {"content": "The 2020 World Series was played in Texas at Globe Life Field in Arlington.","role": "assistant"},"logprobs": null}],"created": 1677664795,"id": "chatcmpl-7QyqpwdfhqwajicIEznoc6Q47XAyW","model": "gpt-3.5-turbo-0613","object": "chat.completion","usage": {"completion_tokens": 17,"prompt_tokens": 57,"total_tokens": 74}
}

图像合成 DALL·E

DALL·E 模型概述

DALL·E是一个人工智能系统,可以通过自然语言的描述创造逼真的图像和艺术。DALL·e3目前支持在提示下创建具有特定大小的新映像的功能。DALL·e2还支持编辑现有映像,或创建用户提供的映像的变体。

测试案例

图像生成端点允许您在给定文本提示的情况下创建原始图像。当使用DALL·e3时,图像的大小可以是1024x1024、1024x1792或1792x1024像素。

默认情况下,图像以标准质量生成,但当使用DALL·e3时,您可以将质量设置为“hd”以增强细节。正方形的、标准质量的图像是最快生成的。您可以使用DALL·e3一次请求1个图像(通过并行请求请求更多),或者使用带n参数的DALL·e2一次至多请求10个图像。

from openai import OpenAIclient = OpenAI()response = client.images.generate(model="dall-e-3",prompt="a white siamese cat",size="1024x1024",quality="standard",n=1,
)image_url = response.data[0].url

语音合成 TTS

TTS 模型概述

TTS是一种人工智能模型,可以将文本转换为自然发音的口语文本。我们提供了两种不同的模型变量,ts-1针对实时文本到语音的用例进行了优化,而ts-1-hd针对质量进行了优化。这些模型可以与Audio API中的Speech端点一起使用。

测试案例

语音端点接受三个关键输入:模型、应该转换为音频的文本和用于音频生成的语音。简单的请求如下所示:

from pathlib import Path
from openai import OpenAIclient = OpenAI()speech_file_path = Path(__file__).parent / "speech.mp3"
response = client.audio.speech.create(model="tts-1",voice="alloy",input="Today is a wonderful day to build something people love!"
)response.stream_to_file(speech_file_path)

音色选择

尝试不同的声音(alloy, echo, fable, onyx, nova, and shimmer),找到一个符合你想要的语气和听众。当前的声音是针对英语优化的。

语音识别 Whisper

Whisper 概述

Whisper 是一个通用的语音识别模型。它是在不同音频的大型数据集上训练的,也是一个多任务模型,可以执行多语言语音识别以及语音翻译和语言识别。Whisper v2大型模型目前可通过我们的API使用Whisper -1模型名称。

目前,Whisper的开源版本和通过我们的API提供的版本之间没有区别。然而,通过我们的API,我们提供了一个优化的推理过程,这使得通过我们的API运行Whisper比执行它要快得多。

测试案例

语音识别 API 将要识别的音频文件和所需的音频转录输出文件格式作为输入。我们目前支持多种输入和输出文件格式。文件上传目前限制为 25mb,支持 mp3、mp4、mpeg、mpga、m4a、wav、webm 等文件类型的输入。

from openai import OpenAIclient = OpenAI()audio_file = open("/path/to/file/audio.mp3", "rb")
transcription = client.audio.transcriptions.create(model="whisper-1",file=audio_file
)
print(transcription.text)

数据结构

{"text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger.
....
}

配置 OPENAI_API_KEY

查看 class OpenAI(SyncAPIClient) 类实现的源码片段发现,关于 api_keybase_url 会读取本地环境变量中 OPENAI_API_KEYOPENAI_BASE_URL 变量。

if api_key is None:api_key = os.environ.get("OPENAI_API_KEY")
if api_key is None:raise OpenAIError("The api_key client option must be set either by passing api_key to the client or by setting the OPENAI_API_KEY environment variable")
self.api_key = api_key
if base_url is None:base_url = os.environ.get("OPENAI_BASE_URL")
if base_url is None:base_url = f"https://api.openai.com/v1"

dotenv 加载 .env 环境变量

dotenv是一个Python库(虽然也适用于其他编程语言,如JavaScript),它的主要功能是从.env文件中读取环境变量,并将这些变量加载到操作系统的环境变量中,使得Python应用程序可以轻松地访问这些变量。.env文件是一个纯文本文件,其中包含键值对(key-value pairs),每个键值对占据一行,格式为KEY=VALUE。

pip install python-dotenv

将敏感信息(如API密钥、数据库密码等)存储在环境变量中,而不是硬编码在代码中,是一种良好的安全实践。这样可以减少敏感信息泄露的风险,因为这些值不会存储在代码库中,也不会在部署时暴露出来。

在 Python 代码中,使用 python-dotenv 库加载 .env 文件,并访问其中的环境变量。这通常通过 from dotenv import load_dotenvload_dotenv() 函数实现。访问环境变量:加载.env文件后,可以使用 os.getenv('KEY') 的方式访问环境变量。

from dotenv import load_dotenv
load_dotenv()

图像理解 GPT-4o

gpt - 40和GPT-4 Turbo都具有视觉功能,这意味着这些模型可以接收图像并回答有关图像的问题。从历史上看,语言模型系统一直受到单一输入形式文本的限制。

模型可以通过两种主要方式使用图像:通过传递到图像的链接或在请求中直接传递base64编码的图像。图像可以在用户消息中传递。

from openai import OpenAIclient = OpenAI()response = client.chat.completions.create(model="gpt-4o",messages=[{"role": "user","content": [{"type": "text", "text": "What’s in this image?"},{"type": "image_url","image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",},},],}],max_tokens=300,
)print(response.choices[0])

上传base64编码的图像如果你在本地有一张或一组图像,你可以将它们以base64编码的格式传递给模型,下面是一个实际的例子

import base64
import requestsapi_key = "YOUR_OPENAI_API_KEY"def encode_image(image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode('utf-8')image_path = "path_to_your_image.jpg"base64_image = encode_image(image_path)headers = {"Content-Type": "application/json","Authorization": f"Bearer {api_key}"
}payload = {"model": "gpt-4o","messages": [{"role": "user","content": [{"type": "text","text": "What’s in this image?"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}]}],"max_tokens": 300
}response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)print(response.json())
http://www.mmbaike.com/news/66876.html

相关文章:

  • 如何在百度做网站洗发水营销推广软文800字
  • 怎么切图做网站搜易网服务内容
  • 网站建设优化广告流量厦门seo俱乐部
  • 租一个国外的服务器 建设网站百度官方网站下载
  • 网门网站下载地址一天赚2000加微信
  • 青岛网站建设优化国内推广平台
  • 一个人做网站 优帮云网络推广费用高吗
  • 一个企业做网站的目的企业营销网站制作
  • android移动网站开发详解光盘下载seo自学网官网
  • 网站建设菜单栏设计seo推广教学
  • 孝感网站制作公司今日小说排行榜百度搜索风云榜
  • 六安建设机械网站百度关键词自然排名优化公司
  • 怎么建设自己的一个服务器网站宁波seo外包推广公司
  • b2c电子商城网站建设怎么制作公司网站
  • 网站建设全包哪家便宜网络推广的方式
  • 哪个网站做兼职可靠新东方留学机构官网
  • 郑州网站建设推销电销外包团队在哪找
  • 哈尔滨市建设安全网站查询网址域名ip地址
  • 深圳公司网站设计公司快速seo关键词优化技巧
  • 广西企业网站有哪些宁波seo关键词如何优化
  • 给客户做网站被起诉信息流广告代运营
  • 营销网站开发系统1688自然排名怎么做好
  • 礼服外贸网站小程序开发流程
  • 云开发环境佛山网络排名优化
  • 着力加强网站内容建设网站快速排名
  • 仲恺企业网站建设网络软文是什么意思
  • 免费甜点网站模板下载站长工具关键词挖掘
  • 企业管理小程序seo是怎么优化推广的
  • 用织梦做网站都需要用什么seo排名优化收费
  • 深圳微信分销网站建设seo是指什么职位