当前位置: 首页 > news >正文

政府门户网站特色建设调研报告网络营销方法有什么

政府门户网站特色建设调研报告,网络营销方法有什么,wordpress界面404,买房子上哪个网站最好自动驾驶目标检测项目实战——基于深度学习框架yolov的交通标志检测 目前目标检测算法有很多,流行的就有faster-rnn和yolov,本文使用了几年前的yolov3框架进行训练,效果还是很好,当然也可以使用更高版本的Yolov进行实战。本代码使…

自动驾驶目标检测项目实战——基于深度学习框架yolov的交通标志检测

目前目标检测算法有很多,流行的就有faster-rnn和yolov,本文使用了几年前的yolov3框架进行训练,效果还是很好,当然也可以使用更高版本的Yolov进行实战。本代码使用的是keras框架,pytorch的yolov如何对数据集进行训练,可以参考我之前的文章:
工业缺陷检测项目实战(二)——基于深度学习框架yolov5的钢铁表面缺陷检测

跑工程的原理步骤都是一样的,都可以学习。

数据集准备

使用gtsrb交通标志数据集,下载链接:
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://aistudio.baidu.com/aistudio/datasetdetail/97069
以上两个链接都可以下载,文件夹里面是这样:
在这里插入图片描述
Meta没什么用,主要是Test和Train,Test作为验证集使用。

基础代码准备

本工程基于开源代码进行修改:
https://github.com/miemie2013/Keras-DIOU-YOLOv3

环境

tensorflow==1.15.1
keras==2.3.1

其他看着来,缺什么pip install什么。

使用步骤

1.将数据集放在工程文件夹
在这里插入图片描述
2.生成train和test的txt文件
我这里写了一个csv转txt的代码:
在这里插入图片描述
代码如下:

import numpy as np
import pickle
import re
import os
from PIL import Image# Create raw data pickle file
data_raw = {}
class_list = []
box_coords_list = []
image_file_list = []with open('GTSRB/Test.csv', 'r') as f:next(f) # skip header linefor line in f:  # 遍历每一行line = line[:-1]  # 去掉换行符fields = line.split(',')image_file = fields[7]class_list.append(int(fields[6]))image_file_list.append(image_file)# Find box coordinates for all signs in this imagebox_coords = np.array([int(x) for x in fields[2:6]])box_coords_list.append(box_coords)# 写入txt内容
with open("GTSRB/val.txt", 'w+', encoding='utf-8') as f:for i in range(len(box_coords_list)):box_coord = ""box_coord += str(box_coords_list[i][0]) + ','box_coord += str(box_coords_list[i][1]) + ','box_coord += str(box_coords_list[i][2]) + ','box_coord += str(box_coords_list[i][3])d = image_file_list[i] + ' ' + box_coord + ',' + str(class_list[i])f.write(d + '\n')

路径根据自己的去修改即可。生成的txt放在annotation文件夹下。
在这里插入图片描述
txt文件格式如下:

xxx/xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20 
xxx/xxx.jpg 48,240,195,371,11 8,12,352,498,14
# image_path x_min, y_min, x_max, y_max, class_id  x_min, y_min ,..., class_id 
# make sure that x_max < width and y_max < height

3.生成标签的类别txt文件
在data文件夹下,生成txt的文件来表示类名:
在这里插入图片描述
比如这里有43个类,则我们可以先用数字字符表示,等检测完再转回对于的类名:
在这里插入图片描述
一行表示一个类名,注意此处类名不能有空格,比如以下是错误的例子:
在这里插入图片描述
每一行都存在空格,这样在计算mAP的时候会报错。

数据已准备完毕。

4.修改文件路径
主要是修改train.py文件里面的这三个路径:
在这里插入图片描述
5.训练
运行

python train.py

在这里插入图片描述

6.注意
引用github源码大佬的话:

(1)本仓库有pattern=0、pattern=1、pattern=2这3种训练模式。 0-从头训练,1-读取model_body继续训练(包括解冻,但需要先运行1_lambda2model.py脚本取得model_body),2-读取coco预训练模型训练 你只需要修改pattern的值即可指定训练模式。 然后在这3种模式的if-else分支下,你再指定批大小batch_size、学习率lr等超参数。

(2)如果你决定从头训练一个模型(即pattern=0),而且你的显卡显存比较小,比如说只有6G。 又或者说你想训练一个小模型,因为你的数据集比较小。 那么你可以设置initial_filters为一个比较小的值,比如说8。 initial_filters会影响到后面的卷积层的卷积核个数(除了最后面3个卷积层的卷积核个数不受影响)。 yolov3的initial_filters默认是32,你调小initial_filters会使得模型变小,运算量减少,适合在小数据集上训练。

7.训练完之后,可以得到以下h5文件:
在这里插入图片描述
运行

python 1_lambda2model.py

将训练模型中yolov3的所有部分提取出来。我这里得到aaaa_bgr.h5
在这里插入图片描述
8.mAP评估
运行evaluate_kr.py对keras模型(1_lambda2model.py提取出来的模型)评估,跑完这个脚本后需要再跑mAP/main.py进行mAP的计算。计算完之后会保持结果图:
在这里插入图片描述
在这里插入图片描述

9.测试
在images/test里面放置要检测的图片:
在这里插入图片描述
运行

python demo_kr.py

比如识别:
在这里插入图片描述
识别结果:
在这里插入图片描述
在这里插入图片描述

另外,我添加了绘制acc和loss的曲线图,也对过滤了识别分数地的框。

需要整体代码的可私信我

http://www.mmbaike.com/news/72001.html

相关文章:

  • 好看的个人介绍页纯html源码品牌seo培训
  • 泉州专业做网站如何在百度上推广业务
  • 大气网络公司网站源码百度经验app下载
  • 自己做淘宝客是不是需要建网站郑州seo软件
  • 党政网站建设模板营销软文范例500
  • 营销型网站开发营销网站软文推广网站
  • 做网站导出用什么色彩模式手机百度高级搜索入口
  • 网站asp模板公众号seo排名优化
  • 怎么用链接进自己做的网站吗官方百度
  • 外国的贸易网站网址收录查询
  • 南京移动网站建设网站开发建设步骤
  • 公司网站管理规定爱站网关键词怎么挖掘
  • 关注网站建设搜索引擎优化的作用
  • 武汉口碑最好的装修公司有哪几家网站排名优化师
  • 香港空间做网站速度慢的解决方法深圳最新政策消息
  • 雅布设计作品长沙seo外包
  • 线上宣传推广方案页面seo是什么意思
  • 联盟网站制作余姚网站如何进行优化
  • 网站如何做流量赚钱百度账号登录中心
  • 淄博建网站个人免费网上注册公司
  • 苏州建网站哪个好西安竞价托管公司
  • 天津做流产五洲网站搜索引擎排名国内
  • 云速网站建设1688官网
  • 做服装批发必逛的网站种子搜索神器下载
  • 网站内链布局在线推广
  • 做单页网站深圳整合营销
  • 什么网站动物和人做的百度招聘平台
  • 想要自己做一个网站怎么做桌面百度
  • 门户网站百度百科自己如何开网站
  • 公司官网静态越秀seo搜索引擎优化