当前位置: 首页 > news >正文

哈市哪里网站做的好网站设计制作公司

哈市哪里网站做的好,网站设计制作公司,虚拟空间是什么意思,厦门做点击付费网站Pandas 入门 15 题 1. 相关知识点1.1 修改DataFrame列名1.2 获取行列数1.3 显示前n行1.4 条件数据选取值1.5 创建新列1.6 删去重复的行1.7 删除空值的数据1.9 修改列名1.10 修改数据类型1.11 填充缺失值1.12 数据上下合并1.13 pivot_table透视表的使用1.14 melt透视表的使用1.1…

Pandas 入门 15 题

  • 1. 相关知识点
    • 1.1 修改DataFrame列名
    • 1.2 获取行列数
    • 1.3 显示前n行
    • 1.4 条件数据选取值
    • 1.5 创建新列
    • 1.6 删去重复的行
    • 1.7 删除空值的数据
    • 1.9 修改列名
    • 1.10 修改数据类型
    • 1.11 填充缺失值
    • 1.12 数据上下合并
    • 1.13 pivot_table透视表的使用
    • 1.14 melt透视表的使用
    • 1.15 条件查询及排序
  • 2. 题目
    • 2.1 从表中创建 DataFrame((Pandas 数据结构)
    • 2.2 获取 DataFrame 的大小(数据检验)
    • 2.3 显示前三行(数据检验)
    • 2.4 数据选取(数据选取)
    • 2.5 创建新列(数据选取)
    • 2.6 删去重复的行(数据清理)
    • 2.7 删去丢失的数据(数据清理)
    • 2.8 修改列(数据清理)
    • 2.9 重命名列(数据清理)
    • 2.10 改变数据类型(数据清理)
    • 2.11 填充缺失值(数据清理)
    • 1.12 重塑数据:连结(表格重塑)
    • 1.13 数据重塑:透视(表格重塑)
    • 2.14 重塑数据:融合(表格重塑)
    • 2.15 方法链(高级技巧)

1. 相关知识点

1.1 修改DataFrame列名

data=pd.DataFrame(student_data,columns=['student_id','age'])

1.2 获取行列数

players.shape

1.3 显示前n行

employees.head(n)

1.4 条件数据选取值

students.loc[students['student_id']==101,['name','age']]
students[students['student_id']==101][['name','age']]
students.query('`student_id`==101')[['name','age']]

1.5 创建新列

  • 处理数据的时候,根据已知列得到新的列,可以考虑使用pandas.DataFrame.assign()函数
  • 使用assign函数不会改变原数据,而是返回一个新的DataFrame对象,包含所有现有列和新生成的列
  • 注意:assign和apply函数的主要区别在于前者不改变原数据,apply函数是在原数据的基础上添加新列
employees['bonus']=employees['salary'].apply(lambda x:x*2)
employees=employees.assign(bonus=employees.salary*2)
employees['bonus']=employees['salary']*2

1.6 删去重复的行

customers.drop_duplicates(subset=['email'],keep='first')

1.7 删除空值的数据

# axis=0代表行
students.dropna(subset=['name'],how='any', axis=0,inplace = False)

1.9 修改列名

data=data.rename(columns={'Dest':'iata_code','index':'from'})
students.columns=['student_id','first_name','last_name','age_in_years']

1.10 修改数据类型

students['grade']=students['grade'].astype('int')

1.11 填充缺失值

products['quantity'].fillna(0,inplace=True)# products.replace({'quantity':{# None:0# }},inplace=True)

1.12 数据上下合并

df1._append(df2)
# pd.concat([df1,df2],axis=0)

1.13 pivot_table透视表的使用

weather.pivot_table(index='month',values='temperature',columns='city',aggfunc='sum')

1.14 melt透视表的使用

  • df.pivot() 将长数据集转换成宽数据集,df.melt() 则是将宽数据集变成长数据集
pd.melt(report,id_vars['product'],var_name='quarter',value_name='sales')

1.15 条件查询及排序

animals[animals['weight'] > 100].sort_values(by='weight', ascending=False)

2. 题目

2.1 从表中创建 DataFrame((Pandas 数据结构)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef createDataframe(student_data: List[List[int]]) -> pd.DataFrame: data=pd.DataFrame(student_data,columns=['student_id','age'])return data
student_data=[[1,15],[2,11],[3,11],[4,20]]print(createDataframe(student_data))

2.2 获取 DataFrame 的大小(数据检验)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef getDataframeSize(players: pd.DataFrame) -> List[int]:return list(players.shape)

2.3 显示前三行(数据检验)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef selectFirstRows(employees: pd.DataFrame) -> pd.DataFrame:return employees.head(3)

2.4 数据选取(数据选取)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef selectData(students: pd.DataFrame) -> pd.DataFrame:return students.loc[students['student_id']==101,['name','age']]# return students[students['student_id']==101][['name','age']]# return students.query('`student_id`==101')[['name','age']]

2.5 创建新列(数据选取)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef createBonusColumn(employees: pd.DataFrame) -> pd.DataFrame:employees['bonus']=employees['salary'].apply(lambda x:x*2)# employees=employees.assign(bonus=employees.salary*2)# employees['bonus']=employees['salary']*2return employees

2.6 删去重复的行(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:return customers.drop_duplicates(subset=['email'],keep='first')

2.7 删去丢失的数据(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef dropMissingData(students: pd.DataFrame) -> pd.DataFrame:# axis=0代表行return students.dropna(subset=['name'],how='any', axis=0,inplace = False)

2.8 修改列(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef modifySalaryColumn(employees: pd.DataFrame) -> pd.DataFrame:employees=employees.assign(salary=employees.salary*2)# employees['salary']=employees['salary'].apply(lambda x:x*2)# employees['salary']=employees['salary']*2return employees

2.9 重命名列(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef renameColumns(students: pd.DataFrame) -> pd.DataFrame:students.columns=['student_id','first_name','last_name','age_in_years']# dic={#     'id':'student_id',#     'first':'first_name',#     'last':'last_name',#     'age':'age_in_years'}# students=students.rename(columns=dic)return students

2.10 改变数据类型(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef changeDatatype(students: pd.DataFrame) -> pd.DataFrame:students['grade']=students['grade'].astype('int')return students

2.11 填充缺失值(数据清理)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:products['quantity'].fillna(0,inplace=True)# products['quantity']=products['quantity'].fillna(0)# products.replace({'quantity':{# None:0# }},inplace=True)return products

1.12 重塑数据:连结(表格重塑)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:return df1._append(df2)# return pd.concat([df1,df2],axis=0)

1.13 数据重塑:透视(表格重塑)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef pivotTable(weather: pd.DataFrame) -> pd.DataFrame:return weather.pivot_table(index='month',values='temperature',columns='city',aggfunc='sum')# return weather.set_index(['month','city']).unstack()['temperature

2.14 重塑数据:融合(表格重塑)

在这里插入图片描述
在这里插入图片描述

import pandas as pddef meltTable(report: pd.DataFrame) -> pd.DataFrame:report=pd.melt(report,id_vars=['product'],var_name='quarter',value_name='sales')return report

2.15 方法链(高级技巧)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pddef findHeavyAnimals(animals: pd.DataFrame) -> pd.DataFrame:animals = animals[animals['weight'] > 100].sort_values(by='weight', ascending=False)return animals[['name']]
http://www.mmbaike.com/news/73468.html

相关文章:

  • 安徽网站建郑州网站策划
  • wordpress 闪图不西安seo招聘
  • 音乐网站开发可行性分析谷歌引擎搜索
  • 专门做网站关键词排名关键词搜索工具有哪些
  • 营销型网站建设的优缺点推广网站大全
  • 网站建设公司的出路seo实战培训教程
  • 网站搭建公司排行百度导航下载2022最新版官网
  • 学做热干面网站it培训班真的有用吗
  • 怀化北京网站建设软文怎么写吸引人
  • 预定型网站有哪些合肥网站推广公司排名
  • 万网ecs网站环境搭建厦门人才网最新招聘信息
  • 武汉做网站选华企加速器cpc广告点击日结联盟
  • 网站首次打开速度慢wordpress全网营销培训
  • seo基础入门视频教程嘉兴优化公司
  • 遵义市住房和城乡建设局网站外链信息
  • 网站排名怎样做有效百度快照怎么弄
  • 武汉网站制作怎么做seo刷网站
  • 网站优化需求表seo页面内容优化
  • 免费成品网站搭建网站平台需要多少钱
  • 做网站交互demo工具nba最新交易
  • 做出口的网站南京网站快速排名提升
  • 申请建设网站的报告书搜索引擎快速排名推广
  • 可以做数理化的网站广东今日最新疫情通报
  • 自己网站让百度收录怎么搜索会展示网络推广外包
  • 徐州网络公司排名企业站seo
  • 在线制作个人网站买外链网站
  • 网站分析报告怎么做谷歌关键词排名优化
  • 地图素材如何做ppt模板下载网站seo关键词优化最多可以添加几个词
  • 那个网站专做文具批发镇江抖音seo
  • 我用帝国做的网站上传到别一个服务器上重新邦了一个域名优化大师官网下载