当前位置: 首页 > news >正文

网站建设陆金手指科捷14凡科网怎么建网站

网站建设陆金手指科捷14,凡科网怎么建网站,公司做网站建设价格,河南建筑工程网一、 数据准备 本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下: val spark SparkSession.builder().appName("aggregations").master("lo…

一、 数据准备

本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp")val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp 员工表|-- ENAME: 员工姓名|-- DEPTNO: 部门编号|-- EMPNO: 员工编号|-- HIREDATE: 入职时间|-- JOB: 职务|-- MGR: 上级编号|-- SAL: 薪资|-- COMM: 奖金  
dept 部门表|-- DEPTNO: 部门编号|-- DNAME:  部门名称|-- LOC:    部门所在城市

注:emp.json,dept.json 可以在本仓库的resources 目录进行下载。

二、连接类型

Spark 中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉 (或笛卡尔) 连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

 

这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的in和not in字句:

-- LEFT SEMI JOIN
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)-- LEFT ANTI JOIN
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
-- 等价于如下的 IN 语句
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)

所有连接类型的示例代码如下:

2.1 inner join

两表内接

// 1.定义连接表达式
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
// 2.连接查询 
empDF.join(deptDF,joinExpression).select("ename","dname").show()// 等价 SQL 如下:
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

2.2 full outer join

FULL OUTER JOIN 关键字返回左表(Websites)和右表(access_log)中所有的行。

empDF.join(deptDF, joinExpression, "outer").show()
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.3 left outer join

把左边表的数据全部取出来,而右边表的数据有相等的,显示出来,如果没有,显示NULL

empDF.join(deptDF, joinExpression, "left_outer").show()
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.4 right outer join

把右边表的数据全部取出来,而左边表的数据有相等的,显示出来,如果没有,显示NULL

empDF.join(deptDF, joinExpression, "right_outer").show()
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()

2.5 left_semi join

Semi Join,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO,提升执行效率。

left_semi join子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。

left_semi join和join对待右表中重复key的处理方式差异:因为 left semi join 是 in(keySet) 的关系,遇到右表重复记录,左表会跳过,而 join on 则会一直遍历。

最后的结果是这会造成性能,以及 join 结果上的差异。

left semi join 中最后 select 的结果只许出现左表,因为右表只有 join key 参与关联计算了,而 join on 默认是整个关系模型都参与计算了。

empDF.join(deptDF, joinExpression, "left_semi").show()
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()

2.6 left anti join

 left anti join的功能是在查询过程中,剔除左表中和右表有交集的部分

empDF.join(deptDF, joinExpression, "left_anti").show()
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()

2.7 cross join

CROSS JOIN 称为“交叉连接”或者“笛卡尔连接”。SQL CROSS JOIN 连接用于从两个或者多个连接表中返回记录集的笛卡尔积,即将左表的每一行与右表的每一行合并。

empDF.join(deptDF, joinExpression, "cross").show()
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()

2.8 natural join

自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。

spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()

以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的 dept 列进行连接,其实际等价于:

spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()

 

三、连接的执行

在对大表与大表之间进行连接操作时,通常都会触发shuffle join,两表的所有分区节点会进行ALL-to-ALL的通讯,这种查询通常比较昂贵,会对网络 IO 会造成比较大的负担。

 而对于大表和小表的连接操作,Spark 会在一定程度上进行优化,如果小表的数据量小于 Worker Node 的内存空间,Spark 会考虑将小表的数据广播到每一个 Worker Node,在每个工作节点内部执行连接计算,这可以降低网络的 IO,但会加大每个 Worker Node 的 CPU 负担。

是否采用广播方式进行 Join 取决于程序内部对小表的判断,如果想明确使用广播方式进行 Join,则可以在 DataFrame API 中使用 broadcast 方法指定需要广播的小表:

empDF.join(broadcast(deptDF), joinExpression).show()

 

http://www.mmbaike.com/news/77741.html

相关文章:

  • 做网站大概什么价位软文网站有哪些
  • 网站的开发工具保定网站制作
  • 跳网站查询的二维码怎么做的北京网站seo费用
  • 做企业网站设计与实现网上全网推广
  • 做视频能赚钱的网站百度客服中心人工在线咨询
  • 云南建设厅网站安全处湖北seo整站优化
  • 服务器建设网站软件下载seo文章生成器
  • 学做网站设计软件开发培训
  • 泰州网站建设地推
  • 做视频网站审核编辑有假么公司企业网站开发
  • 北京建设信息网站竞价恶意点击立案标准
  • 做科技的网站外链大全
  • 做机械一般做那个外贸网站韩国热搜榜
  • 网页显示网站正在建设中怎么做2022年可以打开的网址
  • 听完米课做的网站制作网页一般多少钱
  • 人工智能网站建设广州新闻头条最新消息
  • 用java怎么做门户网站找培训机构的平台
  • 同样是div 怎么有些网站收录少 有些多新网seo关键词优化教程
  • 合肥做网站优化网站友情链接检测
  • 手机端便民服务平台网站建设社群运营的经典案例
  • 找我家是做的视频网站好苹果看国外新闻的app
  • 百度怎样收录网站杭州网络推广外包
  • 有做网站的公司吗外贸网站推广
  • 深圳专业做网站哪家好深圳营销型网站
  • 开封网站快速排名优化上海有哪些优化网站推广公司
  • 将自己做的网站入到阿里云域名上seo 推广教程
  • 网络系统运维百度热搜seo
  • 浙江省住房和城乡建设厅官方网站企业品牌推广方案
  • it外包有哪些手机优化大师下载安装
  • 本地企业网站建设模板老客外链