当前位置: 首页 > news >正文

澳门响应式网站建设百度企业号

澳门响应式网站建设,百度企业号,如何做公司网站运营,建网站的网站有哪些知识要点 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。 常见的迁移学习方式: 载入权重后训练所有参数.载入权重后只训练最后几层参数.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层.训练数据是 10_m…

知识要点

  • 迁移学习: 使用别人预训练模型参数时,要注意别人的预处理方式。

  • 常见的迁移学习方式:

    • 载入权重后训练所有参数.
    • 载入权重后只训练最后几层参数.
    • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.
  • 训练数据是 10_monkeys 数据: 10种猴子的图片集
  • 图片显示: plt.imshow(mokey)
  • 读取图片: mokey = plt.imread('./50.jpg')

导入resnet 模型:

  • resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')      # 导入模型
  • model = keras.models.Sequential()      # 开始建模
  • model.add(resnet50)     # 添加resnet 网络
  • model.add(keras.layers.Dense(num_classes=10, activation = 'softmax'))     # 添加全连接层
  • model.layers[0].trainable = False     # 除了最后一个全连接层, 其余部分参数不变
  • 模型配置:
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
  • valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)    # 数据初始化处理
  • 指定后面几层参数变化:
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False


一 迁移学习

1.1 简介

使用迁移学习的优势:

  • 能够快速的训练出一个理想的结果
  • 当数据集较小时也能训练出理想的效

注意:使用别人预训练模型参数时,要注意别人的预处理方式。

1.2 常见迁移方式

常见的迁移学习方式:

  • 载入权重后训练所有参数.
  • 载入权重后只训练最后几层参数.
  • 载入权重后在原网络基础上再添加一层全连接层仅训练最后一个全连接层.

二 代码实现

2.1 导包

from tensorflow import keras
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as pltcpu=tf.config.list_physical_devices("CPU")
tf.config.set_visible_devices(cpu)
print(tf.config.list_logical_devices())

2.2 迁移模型  (在迁移模型 后加一层)

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg')num_classes =10
model = keras.models.Sequential()
model.add(resnet50)
model.add(keras.layers.Dense(num_classes, activation = 'softmax'))
model.summary()

2.3 配置模型 (除最后一层外, 其余参数全部冻结)

# 把除最后一层的参数外, 全部冻结
model.layers[0].trainable = False
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])

2.4 导入数据

train_dir = '../day 48 resnet/training/training/'
valid_dir = '../day 48 resnet/validation/validation/'
  • 原始数据处理
train_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input,rotation_range = 40,width_shift_range = 0.2,height_shift_range = 0.2,shear_range = 0.2,zoom_range = 0.2,horizontal_flip = True,vertical_flip = True,fill_mode = 'nearest')height = 224
width = 224
channels = 3
batch_size = 32
num_classes = 10train_generator = train_datagen.flow_from_directory(train_dir,target_size= (height, width),batch_size = batch_size,shuffle= True,seed = 7,class_mode= 'categorical')valid_datagen = keras.preprocessing.image.ImageDataGenerator(preprocessing_function = keras.applications.resnet50.preprocess_input)valid_generator = valid_datagen.flow_from_directory(valid_dir,target_size= (height, width),batch_size= batch_size,shuffle= True,seed = 7,class_mode= 'categorical')
print(train_generator.samples)   # 1098
print(valid_generator.samples)   # 272

2.5 模型训练

# 使用迁移学习, 效果较差, 原始数据的处理方式不同
# 修改需处理方式继续执行, 效果较好
histroy = model.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

 2.6 训练后面几层神经网络参数

resnet50 = keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet')
# 切片指定, 不可调整的层数
for layer in resnet50.layers[0:-5]:layer.trainable = False# 添加输出层
resnet50_new = keras.models.Sequential([resnet50, keras.layers.Dense(10, activation = 'softmax')])
resnet50_new.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['acc'])
resnet50_new.summary()

histroy = resnet50_new.fit(train_generator,steps_per_epoch= train_generator.samples // batch_size,epochs = 10,validation_data = valid_generator,validation_steps= valid_generator.samples // batch_size)

三 图片处理查看

3.1 图片显示

# 预测数据
mokey = plt.imread('./n5020.jpg')
plt.imshow(mokey)    # mokey.shape  (600, 336, 3)

for i in range(2):x, y = train_generator.next()print(type(x), type(y))    # <class 'numpy.ndarray'> <class 'numpy.ndarray'>print('***', x.shape, y.shape)  # *** (32, 224, 224, 3) (32, 10)

3.2 尺寸变换

# 主要是形状和尺寸不对
# 改变尺寸, 再改变形状reshape
from scipy import ndimage  # 专门处理图片
# 改变形状
# 224 = 367 * x  x = 224/367
# 224 = 550 * y  y = 224/550
zoom = (224/mokey.shape[0], 224/mokey.shape[1])
monkey_zoomed = ndimage.zoom(mokey, (224/mokey.shape[0], 224/mokey.shape[1], 1))
monkey_zoomed.shape   # (224, 224, 3)
monkey_1 = keras.applications.resnet50.preprocess_input(monkey_zoomed)
monkey_1.min()    # -123.68
monkey_1 = monkey_1.reshape(1, 224, 224, 3)
model.predict(monkey_1).argmax(axis = 1)  # array([5], dtype=int64)

3.3 resnet 图片处理方式

3.3.1 前景查看

mokey1 = mokey/127.5
plt.imshow(mokey1)

3.3.2 背景查看

mokey1 = mokey1 - 1
plt.imshow(mokey1)

mokey1

http://www.mmbaike.com/news/78650.html

相关文章:

  • 中小企业网站制作广州网络服务公司找赛合公司seo推广一个月见效
  • 昆明平台网站开发上海网站建设优化
  • 网站建设建网站手机系统优化工具
  • 网站开发 需求调研网络培训机构排名前十
  • 泊头做网站上海服务政策调整
  • 网站建设对电子商务中的作用企业培训内容有哪些
  • 政府网站建设相关文件个人网站制作
  • wordpress前台视频上传seo需要掌握什么技能
  • 关于政府网站建设的讲话酒店线上推广方案有哪些
  • 网站开发是做啥的微博推广费用
  • 东莞常平邮政编码多少如何seo推广
  • b2b外贸网站开发有没有免费的写文案的软件
  • 做网站互联互通整站优化是什么意思
  • 在线做静态头像的网站项目推广方式有哪些
  • 做调查问卷权威网站百度seo排名点击软件
  • 可以自己做网站经营吗一键免费创建论坛网站
  • 做甜品网站的需求分析腾讯网网站网址
  • 关于宠物的网站模板关键词优化课程
  • 对网站建设行业的了解合肥关键词排名提升
  • 网站seo诊断技巧企业网站快速建站
  • 值得关注的网站网站推广软件哪个最好
  • golang 网站开发 开源一站式网站建设
  • 做公司网站优劣势关键词歌词林俊杰
  • 青岛建站seo公司百度关键词价格计算
  • wordpress仿站函数aso优化的主要内容
  • 网站文章的作用客户引流推广方案
  • 网站后台管理增加功能网页开发培训网
  • 琼海网站建设什么是搜索引擎优化推广
  • 开发软件需要哪些技术太原百度搜索排名优化
  • wordpress被劫持跳转seo 工具推荐