当前位置: 首页 > news >正文

深圳市龙华区房价seo广告

深圳市龙华区房价,seo广告,wordpress素材库无法显示,泰钢材企业网站源码分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制) 目录 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.MAT…

分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)

目录

    • 分类预测 | MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

1.MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制),运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)、SE注意力机制的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、正则化系数、神经元个数,这3个关键参数。
程序语言为matlab,程序可出分类效果图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-BiLSTM-Attention数据分类预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); %% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.mmbaike.com/news/81576.html

相关文章:

  • 昌吉做58网站的新闻稿撰写
  • 在线建网站seo综合查询工具下载
  • 成都手机网站建设开发seo顾问公司
  • 做网站 做手机app要学什么推56论坛
  • 网站广告怎样做流量神器
  • 我需要一个网站网页推广怎么做的
  • 个人做的网站百度搜索不到网络推广的话术怎么说
  • 织梦网站图标路径做一个官网要多少钱
  • 做旅游网站需要注意什么今天的特大新闻有哪些
  • 成都网站建设哪些公司好设计公司网站
  • 房地产公司网站模板宁波seo优化项目
  • 深圳外贸网站建设公司厦门小鱼网
  • 购物网站开发实例做网页用什么软件好
  • 网站手机页面如何做网站模板哪家好
  • 国内简洁网站昆明百度推广优化
  • rio门户网站的制作临沂网站建设公司哪家好
  • 山东省建设部网站快速网站搭建
  • 鄄城网站建设中国十大电商培训机构
  • 网站开发服务器知识网络营销策略都有哪些
  • 大学校园门户网站建设方案seo文章生成器
  • 做网站技术人员百度引擎提交入口
  • 骨干专业建设网站刷外链
  • 网站建设合同书-详细版点击精灵seo
  • wordpress如何删除以前主题的缓存搜索引擎优化原理
  • 17网站一起做网店浙江阿里指数官网入口
  • 盛盾科技网站建设百度如何注册公司网站
  • 东莞市品牌网站建设旺道seo推广有用吗
  • 武汉购物网站建设外贸网站推广平台有哪些
  • 商城网站要多少钱国内比百度好的搜索引擎
  • 经常修改网站的关键词好不好包就业的培训机构