当前位置: 首页 > news >正文

太原做网站公司运营电商关键词工具

太原做网站公司运营,电商关键词工具,第一接单网,那种广告式网站怎么做使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具 使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具背景1. 代码概述2. 滑窗切割算法原理滑窗切割步骤:示例: 3. **代码实现**1. **加载标签…

使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具

    • 使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具
      • 背景
      • 1. 代码概述
      • 2. 滑窗切割算法原理
        • 滑窗切割步骤:
        • 示例:
      • 3. **代码实现**
        • 1. **加载标签**
        • 2. **切割标签**
        • 3. **主函数**
      • 4. **如何使用该工具**
      • 4. **完整代码**

使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具

背景

在计算机视觉领域,目标检测(Object Detection)是一个非常重要的任务。随着 YOLO(You Only Look Once)系列模型的普及,目标检测模型已经被广泛应用于各种实际场景中。对于目标检测任务,训练模型所需的标注数据至关重要。

当我们处理大规模图像数据集时,尤其是在图像的尺寸远大于模型输入尺寸时,往往需要使用 滑窗切割(Sliding Window)技术,将大图像分割成多个小块进行处理。这一过程不仅可以减小每次训练所需的计算资源,还能增强模型的鲁棒性。

本博客将介绍如何使用 YOLO 的TXT目标检测标签格式 对大图像进行滑窗切割,并确保标签的正确性。我们将逐步阐述该代码的工作原理、使用方法及其在目标检测中的实际意义。

1. 代码概述

该代码实现了对大图像及其对应标签的 滑窗切割,并确保切割后的标签正确地被裁剪并保存。它通过对图像和标签的逐块切割,将大图像分割成多个较小的图像块,同时调整标签的位置和大小,以符合新的图像尺寸。

主要步骤如下:

  1. 加载图像和标签:读取图片和标签文件,确保标签与图像对应。
  2. 滑窗切割:以给定的窗口大小和步长,对图像进行滑窗切割。
  3. 裁剪标签:对于每个切割窗口,检查标签是否位于窗口内,如果位于窗口内,调整标签坐标,并确保标签归一化。
  4. 保存切割后的图像和标签:将切割后的图像和标签保存到新的文件夹中。

2. 滑窗切割算法原理

滑窗切割是计算机视觉中常用的技术,通常用于:

  • 大图像分块:当图像尺寸过大时,模型输入尺寸无法处理整个图像,可以将其切割成小块进行逐块处理。
  • 多尺度检测:不同尺度的物体需要不同大小的窗口来检测。通过滑窗切割,能够在多个尺度上执行目标检测任务。
滑窗切割步骤:
  1. 指定窗口大小和步长:窗口大小和步长决定了滑窗的密集程度。步长越小,生成的窗口越多,计算量越大。窗口大小决定了每个块的输入尺寸。

  2. 标签裁剪:标签的裁剪是根据目标与滑窗的交集来进行的。每个标签会被裁剪到窗口内,并且坐标会被重新归一化到窗口的尺寸。

示例:
  • 窗口大小:640x640像素。
  • 横向步长:301像素。
  • 纵向步长:180像素。

对于每个标签,代码会检查它是否位于当前滑窗内,如果是,标签的位置和尺寸会被重新计算并保存。

3. 代码实现

1. 加载标签
def load_labels(label_file):"""加载YOLO的标签文件"""labels = []with open(label_file, 'r') as f:for line in f:parts = line.strip().split()cls = int(parts[0])  # 类别x_center, y_center, w, h = map(float, parts[1:])labels.append((cls, x_center, y_center, w, h))return labels

这段代码用于读取每个标签文件,并将其转换为包含类别和坐标的格式,方便后续处理。

2. 切割标签
def save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")return new_labels

该函数根据当前窗口的位置,裁剪标签,并将裁剪后的标签归一化到当前窗口大小。

3. 主函数
def main():image_folder = 'images'  # 输入图片文件夹label_folder = 'labels'  # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640  # 滑窗大小step_x = 301  # 横向步长step_y = 180  # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)if windowed_labels:  # 如果窗口内有标签# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')

4. 如何使用该工具

  1. 准备工作

    • 将你的图片和标签放在 images/labels/ 文件夹中。
    • 确保标签格式为 YOLOv5 格式,即每行包含 class_id x_center y_center width height(所有值均为归一化形式)。
  2. 运行脚本

    • 运行上述代码,程序将自动读取图片和标签,进行滑窗切割,并将每个切割后的图像和标签保存到新的文件夹中。
  3. 输出结果

    • 切割后的图像会保存在 output_images/ 文件夹中。
    • 切割后的标签会保存在 output_labels/ 文件夹中,标签内容与原标签一致,只是经过裁

4. 完整代码

import os
import cv2def load_labels(label_path):"""加载YOLOv5标签文件"""labels = []with open(label_path, 'r') as f:for line in f.readlines():parts = line.strip().split()cls = int(parts[0])  # 类别x_center = float(parts[1])  # x中心y_center = float(parts[2])  # y中心w = float(parts[3])  # 宽度h = float(parts[4])  # 高度labels.append([cls, x_center, y_center, w, h])return labelsdef save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")# 如果没有标签,返回空列表return new_labelsdef main():image_folder = 'images'  # 输入图片文件夹label_folder = 'labels'  # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640  # 滑窗大小step_x = 301  # 横向步长step_y = 180  # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)# 如果标签列表为空,说明此窗口没有标签,跳过该窗口if not windowed_labels:continue# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')if __name__ == "__main__":main()
http://www.mmbaike.com/news/83172.html

相关文章:

  • 做技术分享网站 盈利网络优化的工作内容
  • wordpress口语主题重庆seo培训
  • 医院网站开发多少钱竞价推广专员
  • 哪里有网站做爰视频关键词优化心得
  • pc端网站营销2022年传销最新消息
  • 怎么建立企业网站平台seo培训机构排名
  • 网站建设与运营总结全网营销策划公司
  • 做什么网站最赚钱百度seo优化培训
  • 韦博在上面做课件的网站叫什么百度保障中心人工电话
  • 河南省建设厅执业资格注册中心太原seo
  • 天津网站建设icp备seo网站优化培
  • 网站开发页面怎么进线上营销渠道主要有哪些
  • 做外贸企业网站西安网站制作费用
  • 北京 网站建设 公司河源今日头条新闻最新
  • 广东网站开发哪家aso平台
  • 网页制作全过程视频seo整体优化步骤怎么写
  • 网站做推广有用吗北京网站建设制作公司
  • 仿站小工具下载河南网站开发公司
  • 优化设计四年级下册数学答案seo页面链接优化
  • seopc流量排名官网南昌seo教程
  • seo网站做推广价格淘宝关键词搜索排行榜
  • 自己建网站数据怎么做网站营销软文
  • 草桥有做网站公司吗ip营销的概念
  • asp网站模板海淀区seo引擎优化多少钱
  • 北京展示型网站建设价格seo网页优化工具
  • 福田企业网站优化最好的方法海南网站网络推广
  • 网站定制化开发介绍优化关键词排名
  • 龙湖什么网站做宣传新闻稿范文
  • 网站建设案例要多少钱百度上做优化一年多少钱
  • 做网站应该问客户什么需求国外搜索引擎有哪些