当前位置: 首页 > news >正文

做文艺文创产品的网站百度平台营销

做文艺文创产品的网站,百度平台营销,做动态网站需要学什么软件,在线作图网站点估计与区间估计 矩估计与最大似然估计都属于点估计,也就是估计出来的结果是一个具体的值。对比区间估计,通过样本得出的估计值是一个范围区间。例如估计馒头店每天卖出的馒头个数,点估计就是最终直接估计每天卖出10个,而区间估…

点估计与区间估计

矩估计与最大似然估计都属于点估计,也就是估计出来的结果是一个具体的值。对比区间估计,通过样本得出的估计值是一个范围区间。例如估计馒头店每天卖出的馒头个数,点估计就是最终直接估计每天卖出10个,而区间估计是最终估计的结果是每天卖出7到12个。

矩估计

矩估计就是直接用样本替代总体,所以样本均值 x ‾ \overline{x} x等于总体均值 E ( x ) E(x) E(x),样本平方的均值 x 2 ‾ \overline{x^2} x2等于总体均值 E ( x 2 ) E(x^2) E(x2)
例如要估计馒头店每天卖出的馒头个数,我们可以记录30天卖出的馒头数量并除以30平均得到一天卖出的馒头数量并作为估计结果。所以矩估计非常简单易懂,但是受到取样和异常值的影响也比较大。

利用数学语言描述如下:
A k A_{k} Ak x x x k k k阶原点矩。
A k = 1 n ∑ i = 1 n x i k A_{k} = \dfrac{1}{n}\sum_{i=1}^{n}x_{i}^{k} Ak=n1i=1nxik

期望估计(一阶原点矩)
A 1 = E ( x ) = x ‾ A_{1} = E(x) = \overline{x} A1=E(x)=x

方差估计(二阶原点距)
A 2 = E ( x 2 ) = D ( x ) + [ E ( x ) ] 2 A_{2} = E(x^{2}) = D(x) + \left[E(x)\right]^{2} A2=E(x2)=D(x)+[E(x)]2
在实际应用中可以通过样本算出样本的一阶矩和二阶矩,从而得到方差的估计值
D ( x ) = x 2 ‾ − ( x ‾ ) 2 D(x)=\overline{x^2}-(\overline{x})^2 D(x)=x2(x)2

最大似然估计

最大似然估计认为我们既然已经抽取得到了样本结果,那么就认为这个样本结果就是所有情况、所有样本结果中出现概率最大的那一个。考虑到这个样本中每次的取样都是独立同分布的,所以将每一个取值对应的概率相乘就是这一个样本结果出现的概率(也就是似然函数),那么只要让这一个结果出现的概率(似然函数)最大就可以估算出每个值对应的概率
例如要估计馒头店每天卖出的馒头个数是否大于5,最大似然估计就是抽出10天卖出的馒头数,假设现在抽出的结果中有7天是卖出超过了5个馒头,有3天是卖出了少于5馒头,那么直觉告诉我们馒头店每天卖出的馒头个数大于5的概率很大可能为0.7,这样才最可能出现我们现在得到的抽样结果。

所以最大似然估计的一般步骤为:

  1. 写出似然函数(也就是样本结果出现的概率)。对于离散型变量是将对应概率相乘,连续型变量就是概率密度函数相乘。分别有:
    离散型:
    L ( θ ) = ∏ i = 1 n P θ ( X i = x i ) L(\theta)=\prod \limits_{i=1}^n P_\theta(X_i=x_i) L(θ)=i=1nPθ(Xi=xi)
    连续型:
    L ( θ ) = ∏ i = 1 n f ( x i ) L(\theta)=\prod \limits_{i=1}^n f(x_i) L(θ)=i=1nf(xi)
  2. 求似然函数最大时的 θ \theta θ的值。一般为了简化计算,首先对等式两边取对数,将相乘改为相加减,然后对 θ \theta θ求导,求得导数为0时 θ ^ \hat \theta θ^的取值即为最大似然估计值

最大似然估计(MLE)是用来解决“模型已定,参数未知”的问题,在一元线性回归,逻辑回归等众多模型中都会涉及到

实际应用

假设总体 X X X的概率分布为
在这里插入图片描述
其中 θ ( 0 < θ < 1 2 ) \theta(0<\theta<\frac{1}{2}) θ0<θ<21是未知参数,利用总体 X X X的如下样本值1,2,1,0,1,0,1,2,1,2,求 θ \theta θ的矩估计与最大似然估计值。

矩估计:
E ( X ) = ( θ 2 ) × 0 + 2 θ ( 1 − θ ) × 1 + ( 1 − θ ) 2 × 2 = 2 − 2 θ E(X)=(\theta^2) \times 0+2\theta(1-\theta) \times 1 +(1-\theta)^2 \times 2=2-2\theta E(X)=(θ2)×0+2θ(1θ)×1+(1θ)2×2=22θ
样本均值 X ‾ = 11 10 样本均值 \overline X=\frac{11}{10} 样本均值X=1011
根据 E ( X ) = X ‾ E(X)=\overline X E(X)=X可解得 θ ^ = 9 20 \hat \theta=\frac{9}{20} θ^=209

最大似然估计:
设似然函数为 L ( θ ) L(\theta) L(θ),根据样本有2个0值,5个1值,3个2,则有:
L ( θ ) = ( θ 2 ) 2 [ 2 θ ( 1 − θ ) ] 5 ( 1 − θ ) 6 = 2 5 θ 9 ( 1 − θ ) 11 L(\theta)=(\theta^2)^2[2\theta(1-\theta)]^5(1-\theta)^6=2^5\theta^9(1-\theta)^{11} L(θ)=(θ2)2[2θ(1θ)]5(1θ)6=25θ9(1θ)11
对式子两边取对数,有:
l n L ( θ ) = 5 l n 2 + 9 l n θ + 11 l n ( 1 − θ ) ln L(\theta)=5ln2+9ln\theta+11ln(1-\theta) lnL(θ)=5ln2+9lnθ+11ln(1θ)
θ \theta θ求导并令导数为0,有:
d [ l n L ( θ ) ] d θ = 9 θ − 11 ( 1 − θ ) = 0 \frac{d[lnL(\theta)]}{d\theta}=\frac{9}{\theta}-\frac{11}{(1-\theta)}=0 dθd[lnL(θ)]=θ9(1θ)11=0
θ ^ = 9 20 \hat \theta=\frac{9}{20} θ^=209

在本例中,矩估计和最大似然估计的值求出来时一致的,有的情况下两种办法求出来的估计值并不一致

http://www.mmbaike.com/news/86139.html

相关文章:

  • 企业网站备个人重庆seo排名公司
  • wordpress 三主题站长工具seo综合查询全面解析
  • 创意设计网站自己搭建网站需要什么
  • asp.net网站项目搜索引擎免费下载
  • 网站安全的必要性萧山区seo关键词排名
  • 百度怎么收录我的网站职业技能培训机构
  • 云端网站建设南昌seo营销
  • 在58同城做网站怎么样抖音关键词排名
  • 重庆网站关键词排名优化公司哪家好
  • 深圳福田建网站seo优化网页
  • 免费做网站软件网络软文名词解释
  • asp.net 手机网站开发教程游戏推广话术技巧
  • 世安建设集团有限公司网站市场营销证书含金量
  • excel做邮箱网站怎么加3wwwapp网站推广平台
  • 合肥企业建站系统北京百度seo服务
  • 做离线版申报表进入哪个网站做销售有什么技巧和方法
  • 广州网站建设 乐云seo互联网舆情监控系统
  • 手机网站图片切换汽车行业网站建设
  • 图片设计网站免费网站关键词排名服务
  • 手机网站制作哪家好优化营商环境 提升服务效能
  • qq空间钓鱼网站制作海外网络推广
  • 廊坊建设部网站谷歌推广怎么操作
  • wordpress显示空白页搜索引擎优化的英文缩写
  • 连山网站建设营销软件app
  • 电子商务网站建设评估的指标有哪些?网址怎么创建
  • 网站建设高端广州百度竞价外包
  • 网站链接的基本形式网络营销策略研究论文
  • 投票网站怎么做微信群发软件
  • 蚌埠发布刚刚北京推广优化经理
  • 上那个网站做测试用例网域名解析ip查询