当前位置: 首页 > news >正文

创建网站目录权限论坛企业推广

创建网站目录权限,论坛企业推广,建筑工程招投标,腐女做喜欢的网站单纯仅靠LLM会产生误导性的 “幻觉”,训练数据会过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。 正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generati…

单纯仅靠LLM会产生误导性的 “幻觉”,训练数据会过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为大模型时代的一大趋势。

RAG通过在语言模型生成答案之前,先从广泛的专业文档数据库中检索相关信息,然后利用这些专业信息来引导大模型生成的结果,极大地提升了内容的准确性和相关性。

RAG整体技术路线可分为3大块8个小点见图1,其中包含知识库构建、知识检索和知识问答。

参考连接:

langchain框架轻松实现本地RAG_langchain实现rag-CSDN博客

https://www.zhihu.com/question/652674711/answer/3617998488

https://zhuanlan.zhihu.com/p/695287607

https://zhuanlan.zhihu.com/p/692327769

1,Linux 安装llamaFactory

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e '.[torch,metrics]'

2, 安装Qwen2-7b-VL模型

pip install modelscope 
modelscope download --model Qwen/Qwen2-VL-7B-Instruct --local_dir ./Qwen2-VL-7B-Instruct

 3,用llamaFactory启动Qwen2-7b-VL 【启动server端,端口8000】

# 启动黑框api
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \--model_name_or_path /home/xxx/Qwen2-VL-7B-Instruct \--template qwen2_vl \--infer_backend huggingface \--trust_remote_code true# 后端运行,启动对话页面
nohup llamafactory-cli webchat \--model_name_or_path /home/xxx/Qwen2-VL-2B-Instruct \--template qwen2_vl \--infer_backend huggingface \--trust_remote_code true &

4, 安装Embedding库

modelscope download --model BAAI/bge-large-zh --local_dir ./bge-large-zh

5,自定义langchain Client代码【Client端,端口8000】;将搜集的文档放在目录langchain_dataset下

import os
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.llms.base import LLM
from openai import OpenAI
import base64
from langchain.llms.utils import enforce_stop_tokens
from langchain_huggingface import HuggingFaceEmbeddings# 定义LLM模型
class MyGame(LLM):def __init__(self):super().__init__()print("construct MyGame")def _llm_type(self) -> str:return "MyGame"def encode_image(self, image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode('utf-8')def mygame_completion(self, message):client = OpenAI(api_key="0",base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),)response = client.chat.completions.create(model="gpt-4o-mini",messages=message,stream=False,temperature=0.1)return response.choices[0].message.contentdef _call(self, prompt, stop=None, image_path=None):if image_path is None:messages = [{"role": "user", "content": prompt}]else:base64_image = self.encode_image(image_path)messages = [{"role": "user","content": [{"type": "text","text": prompt},{"type": "image_url","image_url": {"url":f"data:image/jpeg;base64,{base64_image}"},}]}]response = self.mygame_completion(messages)if stop is not None:response = enforce_stop_tokens(response, stop)return responseBGE_MODEL_PATH = "/home/xxx/bge-large-zh"
root_dir = "./langchain_dataset"def extract_docs_from_directory(directory):docs = []  # 初始化文档列表for root, dirs, files in os.walk(directory):  # 遍历目录for file in files:file_path = os.path.join(root, file)  # 获取文件的完整路径try:loader = TextLoader(file_path)    # 创建TextLoader实例docs.extend(loader.load())        # 加载文件内容并追加到文档列表except Exception as e:print(f"Error loading file {file_path}: {e}")  # 捕获并打印加载错误return docsdocs = extract_docs_from_directory(root_dir)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")query="80cm是多少米."
result = vectorstore.similarity_search(query, k=3)for doc in result:print(doc.page_content)print("********")retriever = vectorstore.as_retriever()template = """Answer the question based only on the following context:{context}Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
llm = MyGame()def format_docs(docs):return "\n\n".join([d.page_content for d in docs])chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)response = chain.invoke(query)
print("RAG 输出结果:",response)print("LLM 输出结果:",llm(query))

6,图文测试代码

if __name__ == "__main__":llm = MyGame()     # 上面代码有定义print(llm("这张图里的是什么。", image_path="E:\code_llm_workspace\static\images\\xxx.jpeg"))

http://www.mmbaike.com/news/86701.html

相关文章:

  • 深圳做购物网站seo推广优化
  • 如何做服装微商城网站建设百度推广助手
  • wordpress app 源码百度免费seo
  • 网站开发的技术意义网站推广排名哪家公司好
  • 深圳工作服制作杭州谷歌seo公司
  • 做一个动态网站要多少钱百度收录提交申请网站
  • wordpress 地址转换上海关键词排名手机优化软件
  • 做品牌网站南宁seo关键词排名
  • dedecms手机网站网站设计与实现毕业设计
  • 邓州网站设计武汉企业网站推广
  • 谁有哪种浏览器网站免费的关键词排名优化软件价格
  • 注册公司后才可以做独立网站吗南京百度关键字优化价格
  • 做黏土的网站b站视频未能成功转码
  • 网站如何做微信支付宝支付宝支付宝接口百度下载安装到桌面上
  • 昆明快速建站模板百度总部在哪里
  • 网站建设报价企业查询系统
  • wordpress自动评论插件杭州企业seo
  • 政府网站建设经费 报告南京seo外包
  • 徐州做网站哪家好海外推广平台有哪些?
  • 深圳做夜场做网站企业seo排名优化
  • 什么是营销型企业网站百度云搜索入口
  • 怎么做网站seo优化域名批量查询系统
  • 微信如何做微商城网站专业的seo搜索引擎优化培训
  • 企业形象网站用什么语言开发合肥seo网络营销推广
  • 标小智logo在线设计重庆seo整站优化
  • 天津时时彩网站制作广告传媒公司经营范围
  • 网站建设套餐是什么小程序定制开发
  • 网站空间 windows linux搜索引擎优化是做什么
  • 商务部网站市场体系建设司子站艺考培训
  • 网站审批需要什么手续百度推广登录平台