当前位置: 首页 > news >正文

用java怎么做游戏下载网站友情链接交易平台源码

用java怎么做游戏下载网站,友情链接交易平台源码,集团定制网站建设公司,永久免费网站虚拟主机目录 1. 模型训练的基本步骤1.1 train、test数据下载1.2 train、test数据加载1.3 Lenet5实例化、初始化loss函数、初始化优化器1.4 开始train和test 2. 完整代码 1. 模型训练的基本步骤 以cifar10和Lenet5为例 1.1 train、test数据下载 使用torchvision中的datasets可以方便…

目录

  • 1. 模型训练的基本步骤
    • 1.1 train、test数据下载
    • 1.2 train、test数据加载
    • 1.3 Lenet5实例化、初始化loss函数、初始化优化器
    • 1.4 开始train和test
  • 2. 完整代码

1. 模型训练的基本步骤

以cifar10和Lenet5为例

1.1 train、test数据下载

使用torchvision中的datasets可以方便下载cifar10数据

cifar_train = datasets.CIFAR10('cifa', True, transform=transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]), download=True)

transforms.Resize((32, 32)) 将数据图形数据resize为32x32,这里可不用因为cifar10本身就是32x32
transforms.ToTensor()是将numpy或者numpy数组或PIL图像)转换为PyTorch的Tensor格式,以便输入网络。
transforms.Normalize()根据指定的均值和标准差对每个颜色通道进行图像归一化,可以提高神经网络训练过程中的收敛速度

1.2 train、test数据加载

使用pytorch torch.utils.data中的DataLoader用来加载数据

cifar_train = DataLoader(cifar_train, batch_size=batchz, shuffle=True)

batch_size=batchz: 这里batchz是一个变量,代表每个批次的样本数量。
shuffle=True: 这个参数设定为True意味着在每次训练循环(epoch)开始前,数据集中的样本会被随机打乱顺序。这样做可以增加训练过程中的随机性,帮助模型更好地泛化,避免过拟合特定的样本排列顺序。

1.3 Lenet5实例化、初始化loss函数、初始化优化器

    device = torch.device('cuda')model = Lenet5().to(device)crition = nn.CrossEntropyLoss().to(device)optimizer = optim.Adam(model.parameters(), lr=1e-3)

注意:网络和模型一定要搬到GPU上

1.4 开始train和test

  • 循环epoch
  • 加载train数据、输入模型、计算loss、backward、调用优化器
  • 加载test数据、输入模型、计算prediction、计算正确率
  • 输出正确率
 for epoch in range(1000):model.train()for batch, (x, label) in enumerate(cifar_train):x, label = x.to(device), label.to(device)logits = model(x)loss = crition(logits, label)optimizer.zero_grad()loss.backward()optimizer.step()# testmodel.eval()with torch.no_grad():total_correct = 0total_num = 0for x, label in cifar_test:x, label = x.to(device), label.to(device)logits = model(x)pred = logits.argmax(dim=1)correct = torch.eq(pred, label).float().sum().item()total_correct += correcttotal_num += x.size(0)acc = total_correct / total_numprint(epoch, 'test acc:', acc)

2. 完整代码

import torch
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import transforms
from torch import nn, optim
import syssys.path.append('.')
from Lenet5 import Lenet5def main():batchz = 128cifar_train = datasets.CIFAR10('cifa', True, transform=transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]), download=True)cifar_train = DataLoader(cifar_train, batch_size=batchz, shuffle=True)cifar_test = datasets.CIFAR10('cifa', False, transform=transforms.Compose([transforms.Resize((32, 32)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]), download=True)cifar_test = DataLoader(cifar_test, batch_size=batchz, shuffle=True)device = torch.device('cuda')model = Lenet5().to(device)crition = nn.CrossEntropyLoss().to(device)optimizer = optim.Adam(model.parameters(), lr=1e-3)for epoch in range(1000):model.train()for batch, (x, label) in enumerate(cifar_train):x, label = x.to(device), label.to(device)logits = model(x)loss = crition(logits, label)optimizer.zero_grad()loss.backward()optimizer.step()# testmodel.eval()with torch.no_grad():total_correct = 0total_num = 0for x, label in cifar_test:x, label = x.to(device), label.to(device)logits = model(x)pred = logits.argmax(dim=1)correct = torch.eq(pred, label).float().sum().item()total_correct += correcttotal_num += x.size(0)acc = total_correct / total_numprint(epoch, 'test acc:', acc)if __name__ == '__main__':main()

model.train()和model.eval()的区别和作用
model.train()
作用:当调用模型的model.train()方法时,模型会进入训练模式。这意味着:
启用 Dropout层和BatchNorm层:在训练模式下,Dropout层会按照设定的概率随机“丢弃”一部分神经元以防止过拟合,而Batch Normalization(批规范化)层会根据当前批次的数据动态计算均值和方差进行归一化。
梯度计算:允许梯度计算,这是反向传播和权重更新的基础。
应用场景:在模型的训练循环中,每次迭代开始之前调用,以确保模型处于正确的训练状态。

model.eval()
作用:调用model.eval()方法后,模型会进入评估模式。此时:
禁用 Dropout层:Dropout层在评估时不发挥作用,所有的神经元都会被保留,以确保预测的确定性和可重复性。
固定 BatchNorm层:BatchNorm层使用训练过程中积累的统计量(全局均值和方差)进行归一化,而不是当前批次的统计量,这有助于模型输出更加稳定和一致。
应用场景:在验证或测试模型性能时使用,确保模型输出是确定性的,不受训练时特有的随机操作影响,以便于准确评估模型的泛化能力。

http://www.mmbaike.com/news/90725.html

相关文章:

  • 在线制作网站乔拓云b2b网站推广优化
  • 关于网站建设的调查问卷seo网站推广
  • wordpress4.9下载seo技术专员招聘
  • 自己做网站赚流量钱济南做网站公司哪家好
  • 北京自助建站系统百度指数关键词未收录怎么办
  • 做胃镜需那好天津津门网站A整站优化和单词
  • 如何做私服网站代理网站快速上排名方法
  • 做网站的qq兼职怎么优化推广自己的网站
  • 深圳网络开发公司有哪些优化公司排行榜
  • 深圳微信网站公司网络推广外包哪家好
  • 做国外零售做什么网站竞价推广专员
  • PHP+MySQL网站开发全程实例网站设计公司怎么样
  • 网站开发asp 视频教程域名搜索引擎
  • java怎么做网站域名注册管理机构
  • 网站开发网seo优化关键词放多少合适
  • 今日国内新闻头条大事南宁seo咨询
  • 淘宝联盟怎么自己做网站网站seo培训
  • 网站怎么做才不会被封电商网店
  • 做网站可以用思源字体吗太原seo网站排名
  • 群晖根目录wordpress东莞seo网络公司
  • 一流的赣州网站建设推广之家app
  • 专科医院网站建设双11销售数据
  • 网站建设 上海网头条热点新闻
  • 有没有做网站的电话营销的概念是什么
  • nodejs网站毕设代做关于华大18年专注seo服务网站制作应用开发
  • 计算机学习网站百度seo指南
  • 公众号做成网站那样怎么做新闻热点最新事件
  • 招聘网站哪个好用关键词seo优化排名公司
  • 广州网站建设易企今天热搜榜前十名
  • photoshop手机版安卓汕头seo全网营销