当前位置: 首页 > news >正文

网站建设 预算长沙官网seo分析

网站建设 预算,长沙官网seo分析,建设网站 如何给文件命名,江苏省建设信息网站管理平台本文是将文章《XGBoost算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。 好的,公式(12-2)表示的是 XGBoost 在第 t t t 轮迭代中对样本 i i i 的预测值。它说明了在第 t t t 轮迭代中,模型的预测是通过累加之前…

本文是将文章《XGBoost算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。


好的,公式(12-2)表示的是 XGBoost 在第 t t t 轮迭代中对样本 i i i 的预测值。它说明了在第 t t t 轮迭代中,模型的预测是通过累加之前所有树的输出值,再加上当前新树的输出得到的。这是 XGBoost 的梯度提升过程的核心之一。让我们一步步解析这个公式的含义和其背后的思想。

公式的结构

y ^ i ( t ) = ∑ k = 1 t − 1 f k ( x i ) + f t ( x i ) (12-2) \hat{y}_i^{(t)} = \sum_{k=1}^{t-1} f_k(x_i) + f_t(x_i) \tag{12-2} y^i(t)=k=1t1fk(xi)+ft(xi)(12-2)

公式中的符号和含义

  1. y ^ i ( t ) \hat{y}_i^{(t)} y^i(t)

    • 表示第 t t t 轮迭代时,模型对第 i i i 个样本的预测值。
    • 这是当前模型对样本 i i i 的最新预测,经过前 t t t 轮迭代的累加优化。
  2. ∑ k = 1 t − 1 f k ( x i ) \sum_{k=1}^{t-1} f_k(x_i) k=1t1fk(xi)

    • 这是前 t − 1 t-1 t1 轮的累加预测结果。
    • 每一轮 k k k 中生成的树 f k f_k fk 都是一个弱学习器,专注于减少前几轮的预测误差。前 t − 1 t-1 t1 轮中所有树的预测值的累加,就代表了在第 t − 1 t-1 t1 轮迭代完成后,模型对样本 i i i 的总预测值。
    • 可以把 ∑ k = 1 t − 1 f k ( x i ) \sum_{k=1}^{t-1} f_k(x_i) k=1t1fk(xi) 看作是第 t − 1 t-1 t1 轮的预测结果,即 y ^ i ( t − 1 ) \hat{y}_i^{(t-1)} y^i(t1)
  3. f t ( x i ) f_t(x_i) ft(xi)

    • 表示第 t t t 轮新生成的树对样本 i i i 的预测值。
    • 这一轮生成的新树 f t f_t ft 是基于前 t − 1 t-1 t1 轮的残差(预测误差)训练得到的,旨在修正当前模型的预测误差,使得预测结果更接近真实目标值。

公式的意义

  • 公式 y ^ i ( t ) = ∑ k = 1 t − 1 f k ( x i ) + f t ( x i ) \hat{y}_i^{(t)} = \sum_{k=1}^{t-1} f_k(x_i) + f_t(x_i) y^i(t)=k=1t1fk(xi)+ft(xi) 体现了梯度提升的思想,即通过逐步迭代来优化模型的预测能力。
  • 在每一轮迭代中,XGBoost 会添加一棵新的树 f t f_t ft,这棵树的目标是尽量拟合前一轮的残差。换句话说,新的树 f t f_t ft 是根据前一轮的误差训练的,目的是修正当前模型对样本 i i i 的预测,使得模型逐渐逼近真实目标值 y i y_i yi
  • 随着迭代轮数 t t t 的增加,累加的预测值会越来越接近真实的 y i y_i yi,从而提高模型的整体预测精度。

等价于递推公式

这个公式实际上与递推公式是等价的。我们可以这样写递推公式:

y ^ i ( t ) = y ^ i ( t − 1 ) + f t ( x i ) \hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i) y^i(t)=y^i(t1)+ft(xi)

在这里:

  • y ^ i ( t − 1 ) = ∑ k = 1 t − 1 f k ( x i ) \hat{y}_i^{(t-1)} = \sum_{k=1}^{t-1} f_k(x_i) y^i(t1)=k=1t1fk(xi),表示前 t − 1 t-1 t1 轮的累加预测结果。
  • 因此, y ^ i ( t ) = ∑ k = 1 t − 1 f k ( x i ) + f t ( x i ) \hat{y}_i^{(t)} = \sum_{k=1}^{t-1} f_k(x_i) + f_t(x_i) y^i(t)=k=1t1fk(xi)+ft(xi) 是一种更展开的写法。

为什么这样逐步累加是有效的

  1. 残差修正

    • 在每一轮中,XGBoost 都会根据之前的残差训练一棵新的树 f t f_t ft,这棵树的输出会帮助减少当前的误差,使得模型的预测越来越接近真实值。
  2. 逐步逼近

    • 每次添加的新树只需处理当前的剩余误差,不需要完全重新拟合整个模型。这种逐步修正的方式使得模型能够更精确地捕捉数据的细节,而不会因为一次性拟合复杂模式而导致过拟合。
  3. 控制复杂度

    • 这种累加结构也方便了对模型复杂度的控制。因为每次只增加一个新树,XGBoost 可以通过设置最大树数、树的深度等超参数来控制模型的复杂度,从而防止过拟合。

总结

公式(12-2)表示了 XGBoost 在第 t t t 轮迭代中的预测更新。它说明了模型的预测值是所有之前轮次的树的预测结果之和,加上当前轮次新树的输出。这种逐步累加的方式使得 XGBoost 能够有效地修正误差,逐步逼近真实目标值,从而提升模型的预测精度。

http://www.mmbaike.com/news/90789.html

相关文章:

  • 网站副标题怎么修改品牌运营管理公司
  • 网站备案转服务器外链网盘
  • 如何写代码做网站做网站推广的公司
  • 龙华做网站怎么样品牌推广外包公司
  • 狠狠做网站湖南seo推广服务
  • 长春seo网络优化招聘网东莞seo外包公司哪家好
  • 做奥迪汽车网站毕业论文汽车seo是什么意思
  • 给客户建完美网站快速网站seo效果
  • 如东建设局网站seo技术培训山东
  • 做传单网站不受限制的搜索引擎
  • 体检网站源码小红书网络营销策划方案
  • 做移动网站开发seo建站教程
  • 网站建设培训一般多少钱浙江企业seo推广
  • 网站建设的有什么需求免费网页制作网站
  • 主流的网页开发技术优化一下
  • 做网站培训湖南搜索引擎推广平台
  • 哪里有专业做网站百度热搜榜在哪里看
  • 中煤浙江基础建设有限公司网站可以直接打开网站的网页
  • 做网站需要什么书广州竞价托管
  • 做企业网站主题要自制吗百度信息
  • 山东济南市网站建设如何做网站推广
  • 某网站自己做中性笔关键词seo教程
  • 网店装修定制郑州seo建站
  • 恩施公司做网站如何查询百度收录情况
  • 外链建设给网站起的作用seo排名教程
  • 装修网站建设价格培训机构怎么找
  • 开锁在百度上做网站要钱吗指数是什么意思
  • 那些网站可以做行测题百度网站提交入口网址
  • 公众号 创意名字windows10优化软件
  • 网站建设asp编程百度seo工作室