当前位置: 首页 > news >正文

做的网站可以转给其他公司吗网销怎么做才能做好

做的网站可以转给其他公司吗,网销怎么做才能做好,深圳互联网公司招聘信息,信息产业部网站备案一、简介 本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。 二、蒙特卡洛积分介绍 1. 介绍 蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。 例如,对于目标积分函数: ∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x…

一、简介

本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。

二、蒙特卡洛积分介绍

1. 介绍

蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=abf(x)dx(3)

2. 证明

下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1Np(xi)f(xi))=N1i=1i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1i=NE(g(x))=N1Ng(x)p(x)dx=g(x)p(x)dx=f(x)dx(4)
求证得证。

三、蒙特卡洛积分方差

蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(cX)=c2δ2(X)δ2(aX+bY)=a2δ2(X)+b2δ2(Y)+2abCOV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))=N21i=1i=Nδ2(p(x)f(x))=N1δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。

四、蒙特卡洛积分与差分积分

蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。

http://www.mmbaike.com/news/92205.html

相关文章:

  • 大连网站哪家做的好?关键词推广操作
  • wordpress简洁淘宝客免费主题网站seo去哪个网站找好
  • 安丘做网站的公司北京网站建设开发公司
  • 做网站的复式照片温州seo教程
  • 太仓智能网站开发培训机构招生方案
  • wordpress博东莞网站优化公司哪家好
  • 厦门网站建设是什么女教师网课入侵录屏
  • 个人电脑做网站服务器网站体验营销案例
  • wordpress加站点描述榆林市网站seo
  • 哪个网站做海报比较好手机版百度入口
  • wordpress文章与页面关联优化深圳seo
  • 网站怎么做域名谷歌搜索引擎免费入口 香港
  • app软件开发一般要多少钱seo搜索引擎优化薪资水平
  • 湖州服装网站建设网站整站优化推广方案
  • 网站制作自己接单在百度怎么发广告做宣传
  • 深圳做网站个人电工培训内容
  • 小程序加盟代理前景惠州抖音seo策划
  • 网站如何做微信支付宝支付宝佳木斯seo
  • 外包网站公司如何建网站
  • 长乐建设局网站海外新闻发布
  • 誉重网站建设公司灰色项目推广渠道
  • 福田网站建设哪家公司靠谱企业品牌网站营销
  • 5年程序员真实工资跨境电商seo什么意思
  • 罗湖网站制作小说关键词自动生成器
  • 郑州信息港宁波seo推广服务电话
  • 中国白客网vip钓鱼网站开发网页设计自学要多久
  • 新沂网站设计seo学堂
  • 公司做网站怎么赚钱吗优秀软文范例200字
  • 网站服务器有哪些类型宁波网站推广方案
  • 政府网站专题栏目建设方案网络营销七个步骤