当前位置: 首页 > news >正文

加盟广告北京seo公司排名

加盟广告,北京seo公司排名,自己用dw做网站能加声音吗,程显峰 wordpress文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Network…

文章目录

    • 图的定义和表示
    • 可以使用图数据结构的问题
    • 将图结构用于机器学习的挑战
    • 最基本的图神经网络概述
    • 汇聚操作
    • 基于信息传递的改进图神经网络
    • 全局向量信息的利用

本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Networks。同时,所有的图片也都来源于该博客。本文主要是记录本人自己的学习体会与心得,帮助其他初学者能够更快入门图神经网络而无需看冗长的英文原文。

图的定义和表示

在这里插入图片描述
图可以用三个符号进行表示:

  • 顶点集(V):图中的所有顶点构成一个顶点集;
  • 边集(E):图中的所有边构成一个边集;
  • 图整体(U):完整考虑一个图的所有顶点和边以及对应的拓扑结构,图的整体被称为U。

在计算机中,无论是顶点集、边集或者图整体都可以使用向量进行表示。顶点向量中的各个值表示顶点的属性;边向量中的各个值表示边的属性;图向量同理。

另外,一张图也可以使用离散数学中的邻接矩阵进行表示,具体内容可以参见离散数学课程教材。

很多现实中的问题,都可以把问题中的实体转化为图的顶点,把实体之间的关系转换为图中的边,从而使用图来表示该现实问题。

可以使用图数据结构的问题

可以使用图数据结构的问题可以分为三个类型,分别是图层面的问题、顶点层面的问题和边层面的问题。

  • 图层面的问题:找出含有两个环的图;
    在这里插入图片描述

  • 顶点层面的问题:将图中的所有顶点划分为两类;
    在这里插入图片描述

  • 边层面的问题:给图中的所有边判定类型。
    在这里插入图片描述

将图结构用于机器学习的挑战

将图结构应用于机器学习领域的最大挑战是如何表示图结构,使得其能够与搭建的神经网络兼容,并被计算机计算和处理。

图结构中包含有四类信息:顶点集信息、边集信息、图整体信息和连接性信息。前面三种类型的信息都可以通过向量或矩阵的方式进行表示,但是连接性信息的表示会更加麻烦。

表示连接性的最直观方法就是使用邻接矩阵,但是很多情况下邻接矩阵都是稀疏的,因此会无意义地占用非常大的存储空间。即使通过稀疏化的方式表示邻接矩阵也会有计算机难以处理的问题。

为此,可以通过邻接表的形式表示邻接矩阵。邻接表的大小与边的数量成正比,其中的每一个元素记录了哪两个顶点之间存在一条边。

在这里插入图片描述
下面将正式开始介绍图神经网络。

最基本的图神经网络概述

图神经网络本质上就是一个特用于图模型的神经网络。

图神经网络的基本思路如下:由于上面我们已经提到,图中除了连通性信息外,其他的三个属性(顶点集、边集和整体)都可以用能够代入神经网络进行计算的向量来进行表示,因此,我们对于三类属性,分别构造一个神经网络。

也就是说,一个神经网络以顶点集向量作为输入,一个神经网络以边集向量作为输入,另一个神经网络以整体向量作为输入。这样的三个网络组合在一起,就构成了图神经网络的一个层。多个图神经网络层叠加在一起,就构成了完整的图神经网络。

需要注意的有两点:首先,是每一个图神经网络层中的神经网络的输出形状都与输入形状相同,也就是说,输入的向量长度和输出的向量长度相同;其次,对于图的连通性,图神经网络不会对其进行修改,也就是说,一张图经过了图神经网络,其连通性不会发生改变:原来相连的两个顶点仍然相互连接。

面对分类任务,只需要在最后一层输出加上全连接层和softmax分类即可。基本原理也如下图所示:

在这里插入图片描述

汇聚操作

有时在实际问题中会遇到一些特殊的情况,使得无法同时获得顶点集的向量、边集的向量和整体的向量,这个时候,就可以使用汇聚的思想来补充生成当前没有的向量。下面将以缺失顶点集为例进行说明,其他情况可以类比推理。

当顶点集缺失时,每一个顶点连接了多条边,因此可以把每个顶点连接的多条边的向量进行叠加,最后再加上整体的向量,即可替代该顶点的向量。

在这里插入图片描述

基于信息传递的改进图神经网络

上面所提到的基本图神经网络存在一个问题,那就是没有利用图的连通性,从而损失了图中的一部分信息。

为了能够利用连通性,下面将给出一种基于信息传递的改进的图神经网络。

以顶点集为例。在改进的网络中,当一个顶点的向量需要准备待入顶点对应的神经网络进行更新时,并不是直接将该点的结果代入,而是将该顶点以及与该顶点直接相连的顶点的向量相加后进行代入,从而利用上之前未被利用的连通性信息。

边集的信息传递改进图神经网络原理类似。

全局向量信息的利用

之前的介绍中,我们只是说了全局向量是需要计算的以及其计算方法,但是并没有介绍其使用过程,下面将进行介绍。

全局向量可以抽象为一个虚拟的顶点(被称为master node),该顶点与图中的所有顶点相连,同时与图中的所有边相连(点如何与边相连?这是因为这个顶点是抽象的,也可以把这个虚拟顶点想象为一个又是顶点又是边的东西)。

基于上面介绍的信息传递的原理,每次该虚拟顶点在经过全局神经网络更新之前,需要叠加图中当前状态其他所有顶点和边的向量信息。通过这样的方式,就成功利用了图的全局信息。

在这里插入图片描述

http://www.mmbaike.com/news/92385.html

相关文章:

  • 西昌网站制作互联网营销的五个手段
  • 一站式做网站哪家专业网络推广方法怎么做
  • 做示意图的网站百度推广话术全流程
  • 西安115个高风险区降为低风险石家庄百度推广优化排名
  • 海口做网站多少钱郑州seo网站管理
  • 公司建立网站的好处软文营销的三个层面
  • 阿里巴巴网站开发是谁免费网站安全软件下载
  • 网站开发计什么科目网站首页排名
  • ai怎么做自己的网站网站建设合同模板
  • 怎么做免费的网站360优化大师官方最新
  • 网络营销的渠道是什么seo和sem
  • 南京医院网站建设宁德市人社局官网
  • wordpress 5发布优化方案官网电子版
  • 简单的个人主页网站制作html凡科建站的免费使用
  • 佛山seo整站优化最新舆情信息网
  • 如何制作自己的作品集网站想在百度做推广怎么做
  • 做网站怎样找精准营销的三要素
  • 西安直播网站开发今天实时热搜榜排名
  • 在线房屋设计网站广州推广排名
  • 中国建设银行网站新站seo优化快速上排名
  • 权重高的b2b网站58同城推广
  • 沈阳有资质做网站的公司网络营销的网站建设
  • 嘉兴专业的嘉兴专业网站建设项目汉川seo推广
  • 罗湖网站建设的公司哪家好首页关键词怎么排名靠前
  • 网站设计素材下载torrent种子猫
  • 中国建设通seo怎么读
  • 顺的网站建设信息重庆seo整站优化
  • 设计网站一般要多少钱武汉seo网络营销推广
  • 网站开发现成日历控件seo推广薪资
  • 外贸出口流程图详细seo百度首页排名业务