当前位置: 首页 > news >正文

请问番禺哪里有做网站的电商平台发展现状与趋势

请问番禺哪里有做网站的,电商平台发展现状与趋势,想学网站建设选计算机应用技术还是计算机网络技术哪个专业啊,购物网站建设规划书范文在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点: import …

在 PyTorch 中,你可以通过为优化器传递不同的学习率来针对不同的可调参数分配不同的学习率。这通常通过向优化器传递一个字典列表来实现,其中每个字典指定特定参数组的学习率。下面是一个示例代码,展示了如何实现这一点:

import torch
import torch.optim as optim# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 将这些参数分配给不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 模拟一次训练步骤
loss = (param1.sum() + param2.sum()) ** 2
loss.backward()
optimizer.step()# 打印更新后的参数值
print(param1)
print(param2)

对于余弦退火算法中,对于可调的学习率,pytorch对不同的可调参数,分配不同的学习率权重

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 为每个参数组分配不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},{'params': param2, 'lr': 0.001}
], lr=0.01, momentum=0.9)# 为整个优化器设置余弦退火调度器
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.0001)# 模拟一个训练周期
for epoch in range(10):# 执行优化步骤loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()# 更新学习率scheduler.step()# 打印当前学习率for i, param_group in enumerate(optimizer.param_groups):print(f'Epoch {epoch+1}, Param Group {i+1}: Learning Rate = {param_group["lr"]}')

两个参数先后优化,第一阶段主要优化param1,后一阶段主要优化param2

方法1:分阶段调整优化器的参数组
你可以在第一阶段只优化 param1,然后在第二阶段只优化 param2。这可以通过在不同阶段将 param1 或 param2 从优化器中移除或冻结(将学习率设置为 0)来实现。

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 第一阶段:仅优化 param1
optimizer1 = optim.SGD([{'params': param1, 'lr': 0.01}], momentum=0.9)
scheduler1 = CosineAnnealingLR(optimizer1, T_max=5, eta_min=0.0001)# 第二阶段:仅优化 param2
optimizer2 = optim.SGD([{'params': param2, 'lr': 0.001}], momentum=0.9)
scheduler2 = CosineAnnealingLR(optimizer2, T_max=5, eta_min=0.0001)# 模拟训练
for epoch in range(10):# 第一阶段:前5个epoch优化param1if epoch < 5:optimizer1.zero_grad()loss = (param1.sum()) ** 2loss.backward()optimizer1.step()scheduler1.step()print(f'Epoch {epoch+1}: Optimizing param1, LR = {scheduler1.get_last_lr()}')# 第二阶段:后5个epoch优化param2else:optimizer2.zero_grad()loss = (param2.sum()) ** 2loss.backward()optimizer2.step()scheduler2.step()print(f'Epoch {epoch+1}: Optimizing param2, LR = {scheduler2.get_last_lr()}')

方法2:同时设置不同的学习率,但不同阶段侧重不同的参数
在这个方法中,你可以在第一阶段为 param1 设置较大的学习率,param2 设置为非常小的学习率(几乎不变)。然后在第二阶段反过来。

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR# 假设我们有两个模型参数:param1 和 param2
param1 = torch.nn.Parameter(torch.randn(2, 3))
param2 = torch.nn.Parameter(torch.randn(3, 4))# 同时优化param1和param2,但不同阶段有不同的学习率
optimizer = optim.SGD([{'params': param1, 'lr': 0.01},  # param1初始学习率较大{'params': param2, 'lr': 0.0001}  # param2初始学习率较小
], momentum=0.9)scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0.00001)# 模拟训练
for epoch in range(10):optimizer.zero_grad()# 计算损失loss = (param1.sum() + param2.sum()) ** 2loss.backward()optimizer.step()scheduler.step()# 不同阶段调整学习率if epoch == 5:optimizer.param_groups[0]['lr'] = 0.0001  # param1 学习率降低optimizer.param_groups[1]['lr'] = 0.01    # param2 学习率增大# 打印学习率print(f'Epoch {epoch+1}: LR for param1 = {optimizer.param_groups[0]["lr"]}, LR for param2 = {optimizer.param_groups[1]["lr"]}')
http://www.mmbaike.com/news/93737.html

相关文章:

  • 网站建设需百度竞价外包
  • 长春哪家做网站做的好北京官网优化公司
  • 福州做网站企业杭州seo的优化
  • 张家口网站设计最新seo课程
  • 扬州做网站seo优化推广业务员招聘
  • 设计网站可能遇到的问题河南网站公司
  • 网站建设策划书论文最佳的资源搜索引擎
  • 推广qq群的网站上海今天最新发布会
  • 柳州网站建设推荐三只松鼠营销策划书
  • 个人怎么做网站优化网络营销的5种方式
  • 孟州哪里可以做网站合肥网络seo
  • 大连城乡建设网站阿里指数怎么没有了
  • 17网站一起做seo优化排名工具
  • 买域名后 怎么做网站竞价培训班
  • wordpress改造https重庆黄埔seo整站优化
  • 网站域名分几种天津seo实战培训
  • 盐城网站建设科学新概念外链平台
  • 公众号网站制作seo技术好的培训机构
  • 潍坊知名网站建设服务商发表文章的平台有哪些
  • 外贸网站推广策划企业网站seo
  • 网站建设前的市场分析怎么写seo推广教程视频
  • 用电脑做服务器的建一个网站武汉推广服务
  • 网站建设和网页设计中公教育培训机构官网
  • 安徽定制型网站建设推广推广优化seo
  • 通过wordpress建站超能搜索引擎系统网站
  • 建站网站加盟百度网络营销推广
  • 按天计费的seo弊端南宁市优化网站公司
  • 广东网络文明大会开幕seo推广怎么学
  • 手机做网站公司有哪些潍坊关键词优化排名
  • 哪个视频网站做视频最赚钱百度服务中心人工客服