当前位置: 首页 > news >正文

动态网站建设02章在线测试十大seo免费软件

动态网站建设02章在线测试,十大seo免费软件,网站用什么系统好用,红色为主的网站目录RNN结构与原理1.模型总览2.反向传播LSTM结构与原理1.模型总览2.如何解决RNN梯度消失/爆炸问题?GRU结构及原理1.模型总览LSTM与GRU的区别RNN结构与原理 1.模型总览 上图是RNN的展开结构图,由输入层、隐藏层和输出层组成。当前时间步t 的隐藏状态hth_…

目录

      • RNN结构与原理
        • 1.模型总览
        • 2.反向传播
      • LSTM结构与原理
        • 1.模型总览
        • 2.如何解决RNN梯度消失/爆炸问题?
      • GRU结构及原理
        • 1.模型总览
      • LSTM与GRU的区别

RNN结构与原理

1.模型总览

在这里插入图片描述
上图是RNN的展开结构图,由输入层、隐藏层和输出层组成。当前时间步t 的隐藏状态hth_tht 将参与计算下一时间步t+1的隐藏状态ht+1h_{t+1}ht+1hth_tht 还将送入全连接输出层, 用于计算当前时间步的输出OtO_tOt

隐藏层:在这里插入图片描述 激活函数σ一般选择tanh
输出层:在这里插入图片描述 这里的激活函数σ一般选择sigmoid
预测层:在这里插入图片描述
损失函数:在这里插入图片描述 损失是关于预测输出y的函数。

2.反向传播

RNN反向传播需要计算U,W,V等权重的梯度,以计算W的为例:
根据上面的公式,对W求偏导有如下结果。
在这里插入图片描述
重点是求h(T)h^{(T)}h(T)h(t)h^{(t)}h(t)的偏导:
在这里插入图片描述
所以W的梯度表达如下:
在这里插入图片描述
其中tanh′(z(k))=diag(1−(z(k))2)<=1tanh'(z^{(k)})=diag(1-(z^{(k)})^2)<=1tanh(z(k))=diag(1z(k))2)<=1,随着梯度的传到,如果W的主特征小于1,梯度会消失,如果大于1,梯度则会爆炸。因此,为解决上述问题,其改进版本LSTM和GRU等变体应运而生。

LSTM结构与原理

1.模型总览

在这里插入图片描述

长短期记忆(Long short-term memory LSTM) 是一种特殊结构的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比于普通的RNN,LSTM能够在更长的序列中有更好的表现。能够解决在RNN网络中梯度衰减的问题。
RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步。
因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息。 在反向传播期间,RNN 会面临梯度消失的问题。
梯度是用于更新神经网络的权重值,消失的梯度问题是当梯度随着时间的推移传播时梯度下降,如果梯度值变得非常小,就不会继续学习。

LSTM核心是以下三个门:
遗忘门:在这里插入图片描述

输入门:在这里插入图片描述在这里插入图片描述
细胞状态:在这里插入图片描述

输出门:在这里插入图片描述
预测层:在这里插入图片描述

2.如何解决RNN梯度消失/爆炸问题?

RNN梯度消失/爆炸问题源自于在求导时出现连乘,这导致在序列较长的时候梯度趋近于0或无穷,而LSTM求导主要是针对细胞状态求导(涉及矩阵点积的偏导知识):
在这里插入图片描述
因此有:
在这里插入图片描述
其实这里面只ft对这个偏导起作用,即遗忘门。 正是由于ft可训练,每一步的C(k)C^{(k)}C(k)C(k−1)C^{(k-1)}C(k1)的偏导可以自主学习选择在[0,1]或[1,∞],所以整体的连城结果不会趋于0也不会趋于无穷,缓解了梯度消失/爆炸问题。

GRU结构及原理

1.模型总览

在这里插入图片描述
门控循环神经网络(gated recurrent neural network) 是为了更好地捕捉时序数据中间隔较大的依赖关系,循环神经网络的隐含层变量梯度可能出现消失或爆炸,虽然梯度裁剪可以应对梯度爆炸,但是无法解决梯度消失的问题。GRU和LSTM一样是为了解决长期记忆和反向传播中的梯度等问题提出来的。
与LSTM内部中的三个门不同,GRU内部只有两个门,重置门和更新门。
更新门:在这里插入图片描述
重置门:在这里插入图片描述
当前记忆内容:在这里插入图片描述
当前时间步最终记忆:在这里插入图片描述
更新门帮助模型决定到底要将多少过去的信息传递到未来,或到底前一时间步和当前时间步的信息有多少是需要继续传递的。这一点非常强大,因为模型能决定从过去复制所有的信息以减少梯度消失的风险。重置门主要决定了到底有多少过去的信息需要遗忘

LSTM与GRU的区别

  1. 新的记忆都是根据之前状态及输入进行计算,但是GRU中有一个重置门控制之前状态的进入量,而在LSTM里没有类似门(其实输入门也有这个意思);
  2. 产生新的状态方式不同,LSTM有两个不同的门,分别是遗忘门(forget gate)和输入门(input gate),而GRU只有一种更新门(update gate);
  3. LSTM对新产生的状态可以通过输出门(output gate)进行调节,而GRU对输出无任何调节。
  4. GRU的优点是这是个更加简单的模型,所以更容易创建一个更大的网络,而且它只有两个门,在计算性能上也运行得更快,然后它可以扩大模型的规模。
  5. LSTM更加强大和灵活,因为它有三个门而不是两个。
http://www.mmbaike.com/news/94758.html

相关文章:

  • java做网站下载图片发外链的平台有哪些
  • 网站建设在开封找谁做灰色行业推广
  • 美丽乡村 网站建设品牌策划推广方案
  • 中国建设网官方网站狗年纪念币青岛百度整站优化服务
  • 汉鼎网站建设深圳最新消息
  • 如何开淘宝店并运营店铺谷歌seo和百度seo
  • 创建网站需要什么技术搜索引擎优化是做什么
  • 网站哪个好药品销售推广方案
  • 中国电商网站排行榜今日热点头条
  • 乾安网站建设公司网站排名优化培训课程
  • 网站制作公司教你怎么制作网站模板建站多少钱
  • 自己如何在家做网站seo网站推广软件排名
  • 南京行业门户网站直接进入网站的代码
  • 2017网站建设报价方案谷歌搜索引擎免费入口 香港
  • 网站建设 绵阳北京做网站的公司排行
  • 北京做网站推广一个月多少钱优化提升
  • 网站建设与维护试题网站建设合同
  • 橙色网站logo 配色优优群排名优化软件
  • 专业集团门户网站建设服务商公司网络推广的作用
  • 上海做网站的价格全网推广
  • 怎么做刷qq业务网站直通车怎么开才有效果
  • 做网站需要视频衔接怎么做alexa排名查询统计
  • 动态网站开发与设计毕业论文seo优化思路
  • php网站开发实战视频教程微信怎么推广找客源
  • 二级域名做非法网站怎么可以在百度发布信息
  • 网站功能优化嘉兴seo外包服务商
  • 国家商标查询官方网站免费注册域名网站
  • 温州网站建设这个提高工作效率英语
  • 爱狼戈网站建设谷歌排名优化入门教程
  • 网络推广服务如何退费seo发包排名软件