当前位置: 首页 > news >正文

网站长尾词百度seo搜搜

网站长尾词,百度seo搜搜,动态网站开发技术,软件app免费下载大全在拉普拉斯分布中,概率密度函数 (PDF) 表示为: f ( x ∣ μ , b ) 1 2 b exp ⁡ ( − ∣ x − μ ∣ b ) , f(x | \mu, b) \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right), f(x∣μ,b)2b1​exp(−b∣x−μ∣​), 其中 μ \mu μ 是位置参数&…

在拉普拉斯分布中,概率密度函数 (PDF) 表示为:

f ( x ∣ μ , b ) = 1 2 b exp ⁡ ( − ∣ x − μ ∣ b ) , f(x | \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right), f(xμ,b)=2b1exp(bxμ),
其中 μ \mu μ 是位置参数, b > 0 b > 0 b>0 是尺度参数。

给定一个样本数据集 { x 1 , x 2 , … , x n } \{x_1, x_2, \dots, x_n\} {x1,x2,,xn},我们需要对参数 μ \mu μ b b b 进行极大似然估计 (MLE)。

1. 极大似然函数

似然函数为:
L ( μ , b ) = ∏ i = 1 n 1 2 b exp ⁡ ( − ∣ x i − μ ∣ b ) . L(\mu, b) = \prod_{i=1}^n \frac{1}{2b} \exp\left(-\frac{|x_i - \mu|}{b}\right). L(μ,b)=i=1n2b1exp(bxiμ).

取对数,得到对数似然函数:
ℓ ( μ , b ) = ln ⁡ L ( μ , b ) = − n ln ⁡ ( 2 b ) − 1 b ∑ i = 1 n ∣ x i − μ ∣ . \ell(\mu, b) = \ln L(\mu, b) = -n \ln(2b) - \frac{1}{b} \sum_{i=1}^n |x_i - \mu|. (μ,b)=lnL(μ,b)=nln(2b)b1i=1nxiμ∣.

2. 对参数求解

(1) 对 μ \mu μ 求极大值

固定 b b b,对 μ \mu μ 求偏导数:
∂ ℓ ( μ , b ) ∂ μ = − 1 b ∑ i = 1 n sgn ( x i − μ ) , \frac{\partial \ell(\mu, b)}{\partial \mu} = -\frac{1}{b} \sum_{i=1}^n \text{sgn}(x_i - \mu), μ(μ,b)=b1i=1nsgn(xiμ),
其中 sgn ( z ) \text{sgn}(z) sgn(z) 是符号函数,定义为:
sgn ( z ) = { 1 , z > 0 , − 1 , z < 0 , 0 , z = 0. \text{sgn}(z) = \begin{cases} 1, & z > 0, \\ -1, & z < 0, \\ 0, & z = 0. \end{cases} sgn(z)= 1,1,0,z>0,z<0,z=0.

令导数为零,即:
∑ i = 1 n sgn ( x i − μ ) = 0. \sum_{i=1}^n \text{sgn}(x_i - \mu) = 0. i=1nsgn(xiμ)=0.

这表明 μ \mu μ 是数据的中位数。因此, μ ^ \hat{\mu} μ^ 的极大似然估计为:
μ ^ = median ( { x 1 , x 2 , … , x n } ) . \hat{\mu} = \text{median}(\{x_1, x_2, \dots, x_n\}). μ^=median({x1,x2,,xn}).

(2) 对 b b b 求极大值

μ = μ ^ \mu = \hat{\mu} μ=μ^ 代入对数似然函数,对 b b b 求偏导数:
∂ ℓ ( μ , b ) ∂ b = − n b + 1 b 2 ∑ i = 1 n ∣ x i − μ ∣ . \frac{\partial \ell(\mu, b)}{\partial b} = -\frac{n}{b} + \frac{1}{b^2} \sum_{i=1}^n |x_i - \mu|. b(μ,b)=bn+b21i=1nxiμ∣.

令导数为零,得到:
b = 1 n ∑ i = 1 n ∣ x i − μ ^ ∣ . b = \frac{1}{n} \sum_{i=1}^n |x_i - \hat{\mu}|. b=n1i=1nxiμ^∣.

因此, b ^ \hat{b} b^ 的极大似然估计为:
b ^ = 1 n ∑ i = 1 n ∣ x i − median ( { x 1 , x 2 , … , x n } ) ∣ . \hat{b} = \frac{1}{n} \sum_{i=1}^n |x_i - \text{median}(\{x_1, x_2, \dots, x_n\})|. b^=n1i=1nximedian({x1,x2,,xn})∣.

3. 总结

拉普拉斯分布的极大似然估计为:
μ ^ = median ( { x 1 , x 2 , … , x n } ) , \hat{\mu} = \text{median}(\{x_1, x_2, \dots, x_n\}), μ^=median({x1,x2,,xn}),
b ^ = 1 n ∑ i = 1 n ∣ x i − μ ^ ∣ . \hat{b} = \frac{1}{n} \sum_{i=1}^n |x_i - \hat{\mu}|. b^=n1i=1nxiμ^∣.

http://www.mmbaike.com/news/97793.html

相关文章:

  • 做网站什么系统好就业seo好还是sem
  • 凡科建站手机网站建设百度推广渠道商
  • 青浦网站建设苏州网站建设优化
  • 网页微信注册长沙网站seo诊断
  • 易进网站建设推广seo管理与优化期末试题
  • 学校网站建设背景北京网站
  • 网站降权查询工具青岛seo建站
  • 广西高端网站建设公司如何推广公司
  • 网站系统解决方案阿里指数查询官网入口
  • 想注册一个做网站的公司好seo3的空间构型
  • 12306的网站多少钱做的北京百度seo服务
  • 网站管理助手ftp连接不上怎么把网站排名排上去
  • 蓝色大气网站模板百度识别图片找图
  • 我公司让别人做网站了怎么办广告
  • 宝安中心医院上班时间系统优化软件排行榜
  • 珠海快速网站建设沈阳seo博客
  • 南昌新手网站建设费用免费b2b推广网站大全
  • 淘宝做的网站靠谱吗个人网站首页设计
  • 苏州惊天网站制作网安卓aso
  • 比较好的做网站的公司创建自己的网页
  • asp.net做网站5月新冠病毒最新消息
  • 网站后台卸载cmsdede360营销推广
  • 品牌网站制作流程营销团队
  • 海口专业做网站外贸网站seo推广教程
  • 工作室 网站备案广东vs北京首钢
  • 企业的网站建设与设计论文免费制作网站app
  • 网站怎么做全屏的漯河网站seo
  • 博客网站开发源代码搜索引擎营销流程是什么?
  • 做美妆网站的关键词申京效率值联盟第一
  • nodejs网站开发淘宝店铺怎么免费推广