当前位置: 首页 > news >正文

网站开发公司前置审批多合一seo插件破解版

网站开发公司前置审批,多合一seo插件破解版,新人如何自学做网站,杭州做网站费用本笔记来自北航诸兵老师的课程 课程地址:模型预测控制(2022春)lecture 1-1 Unconstrained MPC 文章目录 0 MPC 简介0.1 案例引入0.2 系统模型0.3 MPC的优点0.4 MPC的缺点0.5 MPC的未来 1 详细介绍 0 MPC 简介 0.1 案例引入 MPC(…

本笔记来自北航诸兵老师的课程
课程地址:模型预测控制(2022春)lecture 1-1 Unconstrained MPC

文章目录

  • 0 MPC 简介
    • 0.1 案例引入
    • 0.2 系统模型
    • 0.3 MPC的优点
    • 0.4 MPC的缺点
    • 0.5 MPC的未来
  • 1 详细介绍

0 MPC 简介

0.1 案例引入

MPC(Model Predictive Control)模型预测控制,是预测控制的一种,是基于模型来进行控制的。
老师举了下面这个例子来引入MPC的基本思想:

比方说我们为未来的一段时间制定计划,一天中几点到几点该做什么。但是计划赶不上变化,出现变化,出现拖延,计划就得做相应的调整。过了一段时间,根据计划的实际落实情况,再对接下来的计划进行调整。如此往复。不断地执行计划,也不断地修订计划。

0.2 系统模型

在控制系统中,有惯用表示:输入记作 u u u,状态变量记作 x x x,输出记作 y y y
假设系统是离散的,系统的状态方程为:
x ( k + 1 ) = f ( x ( k ) , u ( k ) ) x(k+1)=f(x(k),u(k)) x(k+1)=f(x(k),u(k))

实际上系统可以是,线性的或非线性的,连续的或离散的或既包含连续又包含离散的,确定的或随机的,只要满足该方程即可

设当前时刻为 k k k,当前状态为 x ( k ) x(k) x(k)
在输入 u ( k ) u(k) u(k) 的作用下,系统的状态将由 x ( k ) x(k) x(k) 变为 x ( k + 1 ) x(k+1) x(k+1)
在输入 u ( k + 1 ) u(k+1) u(k+1) 的作用下,系统的状态将由 x ( k + 1 ) x(k+1) x(k+1) 变为 x ( k + 2 ) x(k+2) x(k+2)
在输入 u ( k + 2 ) u(k+2) u(k+2) 的作用下,系统的状态将由 x ( k + 2 ) x(k+2) x(k+2) 变为 x ( k + 3 ) x(k+3) x(k+3)

由上面的列举,知:输入序列➡️输出序列
但在此时,也就是时刻 k k k ,我们并不知道输入序列 { u ( k ) , u ( k + 1 ) , u ( k + 2 ) , ⋯ } \{u(k),u(k+1),u(k+2),\cdots\} {u(k),u(k+1),u(k+2),} 是多少

自然而然就会想到一个问题——怎么确定输入序列?
答:通过优化的方式,Optimization
状态序列 记为 X ( k ) X(k) X(k)
输入序列 记为 U ( k ) U(k) U(k)
输入序列的求解,可用如下优化问题的公式来描述:
U ∗ ( k ) = a r g m i n ∑ i = k ∞ l ( x ( i ) , u ( i ) ) = { u ∗ ( k ) , u ∗ ( k + 1 ) , … } s . t . x ∈ X , u ∈ U \begin{aligned} U^*(k) &= arg\ min\sum^{\infin}_{i=k}l(x(i),u(i)) \\ &=\{u^*(k),u^*(k+1),\dots\} \\ \\ s.t.\quad &x\in \mathscr{X}, u\in \mathscr {U} \end{aligned} U(k)s.t.=arg mini=kl(x(i),u(i))={u(k),u(k+1),}xX,uU
其中, a r g m i n arg\ min arg min 表示使 **代价函数(目标函数)**取值最小时,输入序列 U ( k ) U(k) U(k) 的取值; ∗ ^* 表示最优解; s . t . s.t. s.t. 表示约束条件; l ( x ( i ) , u ( i ) ) l(x(i),u(i)) l(x(i),u(i)) 称为 “Stage cost”。
u ( k ) = u ∗ ( k ) u(k)=u^*(k) u(k)=u(k) ,舍弃求出的 U ∗ ( k ) U^*(k) U(k) 中后续其他时刻的输入,则由 x ( k + 1 ) = f ( x ( k ) , u ( k ) ) x(k+1) = f(x(k),u(k)) x(k+1)=f(x(k),u(k)) 可以求出时刻 k + 1 k+1 k+1 的状态
接着, k + 1 k+1 k+1 变为当前时刻,重复上述步骤,求出时刻 k + 2 k+2 k+2 的状态 x ( k + 2 ) x(k+2) x(k+2),…
以上就是MPC的基本原理

如果只优化一次,将计算出的 U ( k ) U(k) U(k) 序列依次执行,那么就变成了开环优化;而这里每一时刻优化后都只取 u ∗ ( k ) u^*(k) u(k) 执行( u ∗ ( k ) u^*(k) u(k) x ( k ) x(k) x(k)的函数),并且不断进行优化,构成滚动优化(闭环优化), 因此MPC实际上引入了反馈

0.3 MPC的优点

  • 处理控制输入和系统状态上的约束(Constraints)
    • 约束来源:actuator limits; safety; environmental; economic constraints
    • PID没办法解决约束问题
  • 近似最优控制
    • 与线性系统中的最优控制(LQR, 线性二次型调节器)有区别,在LQR中,我们找到的是最优的增益 k k k(假设,已知系统是线性反馈),MPC找的是 u u u

0.4 MPC的缺点

  • 需要在线优化(online optimization),可能会有较大的计算负载

0.5 MPC的未来

随着计算机算力提升,MPC或替代PID成为工业界控制主流
在这里插入图片描述

1 详细介绍

见【MPC学习笔记】02:MPC详细简介(Lecture 1_1 Unconstrained MPC)

http://www.mmbaike.com/news/99783.html

相关文章:

  • 荣耀手机的商城在哪seo 推广服务
  • 邹城网站网站建设深圳疫情防控最新消息
  • 网站开发需要注册几类商标什么叫外链
  • 深圳设计网站培训百度电脑版下载官网
  • Wordpress 模块wordkey北京关键词优化服务
  • 金融平台网站开发自己怎样在百度上做推广
  • 上海正规建设网站私人订制百度seo搜搜
  • 推荐几个响应式网站做参考企业推广方法
  • 只做鞋子的网站广州王牌seo
  • 已经有域名 怎么修改网站福州外包seo公司
  • cdn网站加速 免备案百度刷排名seo软件
  • 佛山网站搭建网站优化人员通常会将目标关键词放在网站首页中的
  • 长沙软件开发公司苏州百度快照优化排名
  • 自己做下载类网站重庆百度seo公司
  • 北京网站改版多少钱营销策划
  • 做网站是什么工作网络营销推广方案3篇
  • 网站建设工作室需要哪些设备整合营销传播案例分析
  • 网站文章收录慢广东seo教程
  • 东莞做税务登记的是哪个网站免费网站申请域名
  • wordpress垃圾箱在哪里网站优化比较好的公司
  • 江苏省建设工程网站系统怎么创建私人网站
  • 2018网站内容和备案长沙关键词快速排名
  • 动态网站设计的目的谷歌浏览器官网
  • 网站群建设成本分析最新国际新闻50条简短
  • 专门做母婴的网站电商运营方案
  • 聊城开发区建设局网站静态网站开发
  • 做微博网站好不好seo是干啥的
  • 南平建设局网站首页关键词怎么排名靠前
  • 哪个网站音乐做的最好自己做网站制作流程
  • 做独立网站需要注意些什么意思万能bt搜索引擎网站