当前位置: 首页 > news >正文

黑龙江网站建站建设在百度上怎么卖自己的产品

黑龙江网站建站建设,在百度上怎么卖自己的产品,发帖推广百度首页,网络营销的认识所谓高精度,就是大数的运算,这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算,就要掌握计算的原理——竖式运算。 加法 我们这里先简单考虑非负数的加法,竖式这么列对吧: ①存储 我们如何…

所谓高精度,就是大数的运算,这个大数可能是要远远超过现有数据类型的最大范围。如果我们想进行这样的运算,就要掌握计算的原理——竖式运算。`

加法

我们这里先简单考虑非负数的加法,竖式这么列对吧:

①存储

我们如何储存过长的数呢?可以用数组存储。怎么才能将各个数位上的数放到数组里面呢?这里,我们可以使用字符串
我们使用逆序储存,这样会比较方便,后面可以在result数组中反向输出。


int a[241]=,b[241],result[242],l1=0,l2=0;
string c,d;
cin>>c>>d;
// 第一步读取整数
for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';
}
for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';
}

同时,这里l1表示第一个加数的长度,l2表示第二个加数的长度。

②模拟加法运算

接着,模拟运算:

	// 第二步加法计算int l=max(l1,l2)for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}

当我们进行加法运算时,每一位的结果是由两个部分组成的:当前位的数字和从低位“进”来的数字。例如,当我们计算23 + 18时,个位的结果是1,这个1就是从低位“进”来的,而2和3相加的结果是5,这个5就是当前位的数字。

在计算机中,当我们进行高精度计算时,通常会把每个数字拆分成多个位(如一个8位数字可以拆分成个位、十位、百位等),然后逐位进行加法运算。为了得到每个位的正确结果,我们需要考虑从低位“进”来的数字。

例如,如果我们有两个8位数字1234和5678,我们不能直接把它们相加,因为结果会超过8位。正确的做法是逐位进行加法运算:

1 + 6 = 7,没有进位,所以结果的个位就是7
2 + 7 = 9,进位1,所以结果的十位就是9 + 1 = 09
3 + 8 = 11,进位1,所以百位的结果是11 + 1 = 01
4 + 5 = 9,进位1,所以千位的结果是09 + 1 = 009

这样,我们就可以得到最终的结果:0097。

在上面的程序中,“进位”的思想体现在每次加法运算时都考虑了前一位的进位。通过这种方式,我们可以得到正确的高精度结果。

③反向输出:

for(int i=(x>y?x:y);i>=0;i--){cout<<result[i];
}

完整代码:

#include <iostream>
using namespace std;
int main(){// 高精度加法 240位内,调整数组大小可以扩大位数 int a[241]={},b[241]={},result[242]={},l1=0,l2=0;string c,d;cin>>c>>d;// 第一步读取整数for(int i=c.size()-1;i>=0;i--){a[l1++]=c[i]-'0';}for(int i=d.size()-1;i>=0;i--){b[l2++]=d[i]-'0';}int l=max(l1,l2); // 第二步加法计算for(int i=0;i<l;i++){result[i]+=(a[i]+b[i])%10;result[i+1]+=(a[i]+b[i])/10;}for(int i=l;i>=0;i--){cout<<result[i];}return 0;
}

减法

不说什么了,与上同理

#include <iostream>
using namespace std;
int main(){string s1,s2;int a[241]={},b[241]={},result[241]={},k=0,t;cin>>s1>>s2;// 考虑几种特殊情况if(s1==s2){cout<<0;return 0;}if(s1.size()<s2.size()||s1.size()==s2.size()&&s1<s2){cout<<"-";swap(s1,s2);}// 存储数据for(int i=0;i<s1.size();i++){a[s1.size()-i-1]=s1[i]-'0';}for(int i=0;i<s2.size();i++){b[s2.size()-i-1]=s2[i]-'0';}// 模拟竖式的算法for(int i=0;i<(s1.size()>s2.size()?s1.size():s2.size());i++){t=10-b[i]+a[i]+result[k++];if(t<10) result[k]--; // 退位,在后面一位减去1result[k-1]=t%10;}// 前面可能有0,从第一个不是0的数开始输出for(int i=k-1;i>=0;i--){if(result[i]>0){t=i; // 记录第一个不是0的数break;}}// 输出for(int i=t;i>=0;i--){cout<<result[i];}return 0;
}

放到草稿纸上,想想就明白了。

乘法

高精度乘单精度

我们用单精度去乘高精度的每一位,然后累加。

#include <iostream>
using namespace std;
int main(){// 高精度乘单精度(不超过10000)int a[251]={};string s1;int b;cin>>s1>>b;for(int i=0;i<s1.size();i++){a[i]=s1[s1.size()-i-1]-'0';}// 按位相乘for(int i=0;i<s1.size();i++){a[i]=a[i]*b;}// 处理进位for(int i=0;i<s1.size()+4;i++){if(a[i]>=10){a[i+1]+=a[i]/10;a[i]%=10;}}// 获取第一个不是0的数int point=0;for(int i=s1.size()+4;i>=0;i--){if(a[i]!=0){point=i;break;}}for(int i=point;i>=0;i--){cout<<a[i];}return 0;
}

高精度乘高精度

最难的地方,需要找找规律!

#include <iostream>
using namespace std;
int main(){// 高精度乘高精度string s1,s2;int a[251],b[251],c[503]={};cin>>s1>>s2;for(int i=0;i<s1.size();i++) a[i]=s1[s1.size()-i-1]-'0';for(int i=0;i<s2.size();i++) b[i]=s2[s2.size()-i-1]-'0';for(int i=0;i<s1.size();i++){for(int j=0;j<s2.size();j++){//     ↓ 这里是 +=c[i+j]+=a[i]*b[j];// 进位if(c[i+j]>=10){c[i+j+1]+=c[i+j]/10;c[i+j]%=10;}}}int p=0;// 找到不是0的数for(int i=s1.size()+s2.size()-1;i>=0;i--){if(c[i]!=0){p=i;break;}}// 从p开始输出for(int i=p;i>=0;i--){cout<<c[i];}return 0;
}

除法


#include <iostream>
using namespace std;
int main(){int a,b,n,t=0,c[1001];cin>>a>>b>>n;cout<<a/b<<".";a=(a%b)*10;for(int i=0;i<n;i++){c[t++]=a/b;a=(a%b)*10;}for(int i=0;i<t;i++){cout<<c[i];}return 0;
}

这个程序首先接收三个输入:两个整数a和b以及一个整数n,它们分别代表被除数、除数和小数的位数。

然后程序计算出a除以b的商并输出,然后保留这个商的余数。这个余数就是小数点后的第一位。

接着,程序进入一个for循环,该循环执行n次。在每次循环中,它将余数除以b(实际上是一个乘以10的操作),得到下一位小数,然后将这个值存储在数组c中。然后再次保留这个新得到的余数。

最后,程序再输出数组c中的所有值,这些值就是小数a/b的前n位小数。

这个程序使用了小学奥数中的知识:如果你要得到一个数的n位小数,你可以不断地对余数乘以10,然后除以除数,直到得到n位小数为止。

乘方(2的n次方)

思路是高精度乘单精度,单精度的永远是2,然后循环。

#include <iostream>
using namespace std;
int main(){/*高精度2的乘方思路:高精度*单精度2,循环n次*/int a[251]={1},n,len=1;cin>>n;for(int i=1;i<=n;i++){// 按位相乘for(int j=0;j<len;j++){a[j]*=2;}// 处理进位for(int j=0;j<len;j++){if(a[j]>=10){a[j+1]+=a[j]/10;a[j]%=10;}}if(a[len]>0) len++;}for(int i=len-1;i>=0;i--){cout<<a[i];}return 0;
}

1.创建一个长度为251的数组a,并将第一个元素初始化为1。这个数组用来存储每一位的数字。

2.读入一个整数n,表示要计算2的n次方。

3.使用一个外层循环,从1到n进行迭代。在每次循环中,执行以下步骤:
1)使用一个内层循环,从0到len-1进行迭代。这个循环的作用是将数组a中的每一位乘以2。
2)再使用一个内层循环,从0到len-1进行迭代。这个循环的作用是处理进位。如果当前位乘以2之后超过了10,就需要向下一个位置进位。具体做法是,将当前位置除以10的结果加到下一个位置上,然后将当前位置取模10,得到新的当前位置的值。
3)如果处理完所有位置之后,最高位(位置len)的值仍然大于0,就将len加1,表示数组a的长度还需要增加一位。

4.最后,使用一个倒序循环,从len-1到0进行迭代。这个循环的作用是将数组a中的每一位输出到屏幕上。

http://www.mmbaike.com/news/24386.html

相关文章:

  • 网页设计班级网站怎么做网站推广100种方法
  • ecshop生成网站地图url重复新闻发布平台
  • 男女做吃动态网站品牌推广外包公司
  • 牡丹区住房城乡建设局网站网站优化排名易下拉霸屏
  • 沈阳微网站企业文化建设
  • 南阳公司网站制作邯郸网站建设优化
  • 建站的注意事项推广普通话手抄报内容简短
  • 做拍客哪个网站好搜索引擎网址
  • 网站制作的内容什么好网络快速推广渠道
  • 网上做衣服的网站有哪些百度关键字优化精灵
  • 什么做电子书下载网站好关键词排名优化易下拉技巧
  • 代做毕设要注册答疑网站搜索引擎营销的基本流程
  • 交易平台网站开发教程百度云企业网站推广有哪些方式
  • 一般做网站宽度是多少营销策划案ppt优秀案例
  • 佛山网站建设有限公司设计公司网站
  • 廊坊网站建设方案服务济南优化哪家好
  • 免费微信微网站模板下载小说搜索风云榜排名
  • 做网站需要工具苏州网站
  • 苏州退工在哪个网站做宁波企业网站seo
  • 微网站搭建的步骤和技巧重庆seo推广服务
  • 企业网站管理系统用哪个好网络服务提供者收集和使用个人信息应当符合的条件有
  • 建设积分网站长沙百度贴吧
  • 学校网站建设评审会议通知杭州网站建设网页制作
  • 泊头在哪做网站比较好大数据培训机构排名前十
  • 网站改版设计思路中国刚刚发生的新闻
  • 做网站的软件初中生泉州百度推广咨询
  • 北京市网站备案百度下载老版本
  • wordpress论坛注册网站运营seo实训总结
  • 网站维护后期费用营销网站建设教学
  • 毕业论文设计网站开发成免费crm软件有哪些优点